网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元仿真的航空发动机叶片辊轧成形过程参数优化
英文标题:Parameter optimization on aero-engine blade rolling process based on finite element simulation
作者:王国栋1 王鸿雨1 蒋磊1 腾飞1 孙俊才1 孔祥伟2 
单位:1.大连海事大学 交通运输工程学院 2.东北大学 机械工程自动化学院 
关键词:精密辊轧 叶片 辊轧 压下量 摩擦因数 轧制力 
分类号:
出版年,卷(期):页码:2022,47(3):109-115
摘要:

 精密辊轧是航空发动机叶片的重要加工方式,其工艺参数难以确定,导致叶片成形效果难以控制。提出使用ABAQUS有限元仿真方法对辊轧过程进行模拟,通过改变辊轧压下量以及摩擦因数,研究压下量和摩擦因数对叶片成形结果的耦合影响,从而优化工艺参数,获得最优的参数设定。研究结果表明:随着摩擦因数的增加,该辊轧模型叶片的宽展整体增加,且所受轧制力与摩擦因数呈线性正相关;随着端口压下量的增加,叶片所受轧制力以及叶片宽展均有所提升,但当压下量增加超过0.06 mm时,轧制力以及宽展发生突增,叶片变形集中于边缘局部区域,不利于成形结果的精密控制。

 Precision rolling is an important processing method for aero-engine blades, and it is difficult to determine its process parameters, resulting in controlling the blade forming effect difficultly. Therefore, it was proposed to use finite element simulation software ABAQUS to simulate the rolling process, and by changing rolling reduction amount and friction factor, the coupling influence of the rolling reduction amount and the friction factor on the forming result for blade was studied. Furthermore, the process parameters were optimized, and the optimal parameter settings were obtained. The research results show that with the increasing of the friction factor, the overall blade width of the rolling model increases, and the rolling force is linear positive correlation with the friction factor. With the increasing of the reduction amount in port, the rolling force on the blade and the blade width increase, but when the reduction amount exceeds 0.06 mm, the rolling force and the blade width increase suddenly, and the blade deformation is concentrated in the local area of edge, which is not conducive to the precise control of the forming result.

基金项目:
国家自然科学基金资助项目(51905068);辽宁省博士启动基金资助项目(20180540098);辽宁省自然科学基金资助项目(2020-HYLH-24);东北大学重点实验室开放课题基金资助项目(2020RALKFKT012)
作者简介:
王国栋(1995-),男,硕士研究生 E-mail:1026112215@qq.com 通信作者:王鸿雨(1989-),男,博士,副教授 E-mail:wanghongyu@dlmu.edu.cn
参考文献:

 [1]刘维伟, 张定华,史耀耀,.航空发动机薄壁叶片精密数控加工技术研究[J].机械科学与技术, 2004, 23(3):329-331.


 


Liu W W, Zhang D H, Shi Y Y, et al. Research on precision cnc machining technology of thin-walled aeroengine blades [J]. Mechanical Science and Technology for Aerospace Engineering, 2004 23 (3): 329-331.


 


[2]李深亮, 乔思佳, 姜绍西 .航空发动机叶段类静子辊轧叶片加工工艺[J].航空制造技术, 2018, 61(15):40-47.


 


Li S L, Qiao S J, Jiang S X. Processing technology of stator rolling blade for aeroengine blade segment [J]. Aeronautical Manufacturing Technology, 2018, 61 (15): 40-47.


 


[3]毛君, 孟辉,陈洪月,.航空发动机叶片热轧与冷轧过程对比分析与研究[J].热加工工艺,2013,42(13):84-86,91.


 


Mao J, Meng H, Chen H Y, et al. Comparative analysis and research on hot rolling and cold rolling process of aeroengine blade [J]. Hot Working Technology, 2013,42 (13): 84-86, 91.


 


[4]邰清安, 李治华, 孙立群, .航空发动机塑性成形技术的应用与展望[J].航空制造技术, 2014, 451(7):34-39.


 


Tai Q A, Li Z H, Sun L Q, et al. Application and prospect of aeroengine plastic forming technology [J]. Aeronautical Manufacturing Technology, 2014, 451 (7): 34-39.


 


[5]霍晓佩. 高温合金叶片辊轧成形数值模拟及边部损伤研究[D].沈阳:东北大学, 2015.


 


Huo X P. Numerical Simulation and Edge Damage Research of Superalloy Blade Roll Forming [D]. Shenyang: Northeast University, 2015.


 


[6]于建民, 张治民, 李国俊.叶片辊轧工艺数值模拟研究[J].弹箭与制导学报, 2006, 26(1):833-835.


 


Yu J M, Zhang Z M, Li G J. Numerical simulation of blade rolling process[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26 (1): 833-835.


 


[7]毛君, 曹治, 董晓彤.叶片辊轧过程中变形的影响因素[J].科技导报, 2014, 32(7):56-61.


 


Mao J, Cao Z, Dong X T. Influencing factors of blade deformation during rolling [J]. Science & Technology Review, 2014, 32 (7): 56-61.


 


[8]靳淇超, 汪文虎,蒋睿嵩,.压气机叶片辊轧模具型腔回弹补偿方法研究[J].机械工程学报,2017,53(16):148-155.


 


 Jin Q C, Wang W H, Jiang R S, et al. Research on springback compensation method of compressor blade rolling die cavity[J]. Journal of Mechanical Engineering, 2017,53 (16): 148-155.


 


[9]靳淇超, 汪文虎,蒋睿嵩,.一种改进的压气机叶片辊轧成型前滑计算模型[J].航空学报,2016,37(10):3178-3185.


 


 Jin Q C, Wang W H, Jiang R S, et al. An improved forward slip calculation model for compressor blade roll forming[J]. Acta Aeronautica et Astronautica Sinica, 2016,37 (10): 3178-3185.


 


[10]王渊彬, 汪文虎,张艳,.压气机叶片辊轧模具型腔快速建模技术[J].航空学报,2014,35(11):3190-3198.


 


Wang Y B, Wang W H, Zhang Y, et al. Rapid modeling technology of compressor blade rolling die cavity [J]. Acta Aeronautica et Astronautica Sinica, 2014,35 (11): 3190-3198.


 


[11]王玮, 耿文冉, 孔祥伟.航空发动机叶片冷辊轧过程本构模型[J].机械设计与制造, 2018, 328(6):5-8.


 


Wang W, Geng W R, Kong X W. Constitutive model of aeroengine blade cold rolling process [J]. Machinery Design & Manufacture, 2018, 328 (6): 5-8.


 


[12]金加奇, 周道.GH4169叶片冷辊轧成形过程数值模拟分析[J].机械设计与制造, 2019, 338(4):204-206.


 


Jin J Q, Zhou D. Numerical simulation analysis of GH4169 blade cold roll forming process [J]. Machinery Design & Manufacture, 2019, 338 (4): 204-206.


 


[13]Kong X W, Li J, Li B. Finite element analysis of rolling process for variable cross-section blade[J].Journal of Central South University, 2013, 20(12):3431-3436.


 


[14]Jiang Z Y, Du X Z, Du Y B, et al. Strip shape analysis of asymmetrical cold rolling of thin strip[J].Advanced Materials Research, 2010, 97-101:81-84.


 


[15]Ye N Y, Cheng M, Zhang S H. Effect of cold rolling parameters on the longitudinal residual stress distribution of GH4169 alloy sheet[J]. Acta Metallurgica Sinica: English Letters, 2015, 28(12):1510-1517.


 


[16]Kong X W, Wang H Y, Jiang L, et al. Research on rolling force and stress during rolling process of blade with complex surface based on multi-plane slab method[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8):1-12.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9