网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
多缸液压机的模糊自整定积分分离PID同步控制
英文标题:Fuzzy self-tuning integral separation PID synchronous control on multi-cylinder hydraulic press
作者:吴翠红 郝芯 
单位:长春电子科技学院 机电工程学院 
关键词:多缸液压机 模糊自整定积分分离PID控制 相邻交叉耦合 同步控制 同步误差 
分类号:
出版年,卷(期):页码:2022,47(3):146-153
摘要:

 为了减小多缸液压机对给定位移的跟踪误差和液压缸之间的同步误差,设计了相邻交叉耦合模糊自整定积分分离PID同步控制器。以液压阀的阀控电压为控制量,以活塞杆位移为输出量,建立了同步控制系统的动力学方程。选择相邻交叉耦合同步控制方案作为基础方案,将积分分离PID控制与模糊理论相结合,提出了模糊自整定积分分离PID控制方法。仿真结果表明:从超调量、调节时间、同步误差的角度讲,相邻交叉耦合同步控制的效果优于主从同步方案和同等同步方案,模糊自整定积分分离PID控制优于模糊PID控制。经3000 kN液压机控制实验验证,在最大负载为270.4 kN的情况下,液压机压制过程的超调量为3.2%,最大同步误差为0.17 mm,说明设计的控制器具有较好的同步控制效果。

 In order to reduce the tracking error of given displacement and the synchronization error between hydraulic cylinders for multi-cylinder hydraulic press, the adjacent cross-coupling fuzzy self-tuning integral separation PID synchronization controller was designed, and the dynamic equation of synchronous control system was established by taking the valve control voltage of hydraulic valve as the control quantity and the displacement of piston rod as the output quantity. Then, the adjacent cross-coupling synchronous control scheme was selected as the basic scheme, and the fuzzy self-tuning integral separation PID control method was proposed by combining the integral separation PID control with fuzzy theory. The simulation results show that the effect of adjacent cross-coupling synchronization control is better than that of the master-slave synchronization scheme and the equel synchronization scheme in terms of overshoot, adjustment time and synchronization error, and the fuzzy self-tuning integral separation PID control is better than the fuzzy PID control. The overshoot is 3.2%, and the maximum synchronization error is 0.17 mm during the pressing process of hydraulic press when the maximum load is 270.4 kN which are verified by control experiment of 3000 kN hydraulic press, indicating that the designed controller has good synchronization control effect.

基金项目:
吉林省教育厅十三五科学技术项目(JJKH20200612KJ)
作者简介:
吴翠红(1976-),女,硕士,副教授 E-mail:wtk180@163.com
参考文献:

 [1]陶翠霞, 赵鹏,孙波. 多缸液压机的滑模变结构智能同步控制[J]. 锻压技术,2021,46(6):142-149.


 


Tao C XZhao PSun B. Intelligence synchronous control on sliding mode variable structure for multi-cylinder hydraulic press[J]. Forging & Stamping Technology2021,46(6):142-149.


 


[2]刘胜, 郭晓杰,张兰勇. 六相永磁同步电机鲁棒自适应反步滑模容错控制[J].电机与控制学报,2020,24(5):68-7888.


 


Liu S, Guo X J, Zhang L Y. Robust adaptive backstepping sliding mode control for six-phase PMSM system with open phases [J].Electric Machines and Control, 2020,24(5):68-7888.


 


[3]孙宵. 双液压缸力同步控制及控制策略研究[D]. 哈尔滨:哈尔滨理工大学,2020.


 


Sun X. Research on Force Synchronization Control and Control Strategy of Double Hydraulic Cylinder [D]. Harbin: Harbin Engineering University, 2020.


 


[4]刘佑民, 王磊,李博. 一种大负载双缸举升智能同步控制系统[J].航天控制,2020,38(1):17-22.


 


Liu Y M, Wang L, Li B. An intelligent synchronization control for double-cylinder lifting system with large load [J]. Aerospace Control, 2020,38(1):17-22.


 


[5]李胜永. 锻造液压机双缸同步控制系统研究[J].液压与气动,2020(7):99-105.


 


Li S Y. Research on the synchronous control system of two cylinders for forging hydraulic press [J]. Chinese Hydraulics & Pneumatics, 2020(7):99-105.


 


[6]李洪龙, 逄波.双缸四柱液压机同步控制系统的研究[J].机床与液压,2019,47(2):82-8591.


 


LI H L, Pang B. Research on synchronization control system of double hydraulic cylinder four-column hydraulic press [J]. Machine Tool & Hydraulics, 2019,47 (2):82-8591.


 


[7]谭顿, 陶建峰,王旭永. 基于改进粒子群算法的双液压马达同步控制策略[J].机械工程学报,2020,56(16):254-261.


 


Tan D, Tao J F, Wang X Y. Synchronous control strategy of double hydraulic motors based on improved particle swarm optimization[J]. Journal of Mechanical Engineering, 2020,56(16):254-261.


 


[8]Emna Kolsi Gdoura, Moez Feki, Nabil Derbel. Sliding mode control of a hydraulic servo system position using adaptive sliding surface and adaptive gain [J]. International Journal of Modelling, Identification and Control, 2015,3(23):248-259.


 


[9]Koch S, Reichhartinger M. Observer-based sliding mode control of hydraulic cylinders in the presence of unknown load forces[J]. E&I Elektrotechnik Und Informationstechnik, 2016:1-8.


 


[10]杨彦琳. 电液比例阀控四缸同步的控制算法研究[D].兰州:兰州理工大学,2019.


 


Yang Y L. Research on Control Algorithm of Electro-hydraulic Proportional Valve Control Four-cylinder Synchronization [D]. Lanzhou: Lanzhou University of Technology, 2019.


 


[11]陈银环. 基于相邻交叉耦合的凹版印刷机多轴同步控制[J].包装工程,2018,39(11):226-230.


 


Chen Y H. Multi-axis synchronous control of gravure press based on adjacent cross coupling[J]. Packaging Engineering, 2018,39(11):226-230.


 


[12]王超, 孙文旭,马晓静,. 基于模糊控制的HVPE生长设备温度控制系统[J].工程设计学报,2020,27(6):765-770.


 


Wang C, Sun W X, Ma X J, et al. Temperature control system of HVPE growth equipment based on fuzzy control [J]. Chinese Journal of Engineering Design, 2020,27(6):765-770.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9