网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
液压机节流自控负载敏感液压系统及其Simulink仿真
英文标题:Throttling automatic control load sensing hydraulic system of hydraulic press and its Simulink simulation
作者:李坤宏1 江桂云2 朱代兵3 
单位:1.重庆工业职业技术学院 机械工程与自动化学院 2.重庆大学 机械工程学院 3.重庆红江机械有限责任公司 
关键词:负载敏感系统 进出口自控 液压系统 节流 压力损耗 
分类号:
出版年,卷(期):页码:2022,47(3):169-173
摘要:

 为克服液压机阀控系统运行能效低的问题,采用进出口技术和负载敏感技术相结合的方法来调节阀控系统,并对进出油口联动节流进行了适当调整。通过AMESim构建得到仿真模型,探讨了节流自控负载敏感系统运行控制过程。研究结果表明:与负载敏感系统相比,采用进出口自控系统能够实现节流口解调,阻抗条件下该系统能够对出油腔低压力状态进行自动调节,有效降低出油口的压力损耗。进入0.2~0.4 s的超越缩回工况后,右腔压力和泵输出压力均为1 MPa的稳定值;在0.4~0.6 s之间时,系统从超越缩回工况过渡至阻抗工况。为负载敏感系统设置节流自控后可以显著增大电机的输出功率,使液压系统达到更高的工作效率。

 In order to overcome the problem of low energy efficiency for valve control system of hydraulic press, the valve control system was regulated by the method of inlet-outlet technology combiming with load sensing technology, and the linkage throttling for the inlet-outlet of oil was adjusted appropriately. Then, the simulation model was built by AMESim, and the operation control process of throttling automatic control load sensing system was discussed. The results show that compared with load sensing system, the inlet-outlet automatic control system can realize the throttle demodulation, and the system can automatically adjust the low pressure state for the outlet chamber of oil under the impedance condition, effectively reducing the pressure loss for the outlet of oil. After entering the over-retracting condition of 0.2~0.4 s, the pressure of right chamber and the output pressure of pump are both stable values of 1 MPa. Between 0.4~0.6 s, the system transitions from over-retracting condition to impedance condition. After setting the throttling automatic control for the load sensing system, the output power of motor can be significantly improved, so that the hydraulic system can achieve higher work efficiency.

基金项目:
重庆市科技计划(应用开发重大)项目(cstc2015yykfC40001)
作者简介:
李坤宏(1975-),男,硕士,副教授 E-mail:likunhong777@163.com
参考文献:

 [1]邵璇, 张永德, 孙桂涛, . 液压机器人关节力补偿控制研究[J]. 电机与控制学报, 2018, 22(9): 98-103.


 


Shao X, Zhang Y D, Sun G T, et al. Hydraulic robot joint force compensation control [J]. Electric Machines and Control, 2018, 22(9): 98-103.


 


[2]郭玉玺, 张利. 大型模锻液压机的混合动力驱动系统[J].锻压技术, 2020, 45(10): 124-129.


 


Guo Y X, Zhang L. Hybrid power drive system of large die forging hydraulic press [J]. Forging & Stamping Technology, 2020, 45(10): 124-129.


 


[3]柏艳红, 权龙, 郝小星, . 基于流量近似的阀控液压缸动力机构建模[J]. 机械工程学报, 2014, 50(24): 179-185.


 


Bai Y H, Quan L, Hao X X, et al. Modeling of hydraulic valve-controlled cylinder power mechanism based on flow approximation[J]. Journal of Mechanical Engineering, 2014, 50(24): 179-185.


 


[4]贺继林, 危丹锋, 冯利花, . 挖掘机双阀芯液压系统的控制策略分析[J]. 机械设计与研究, 2011, 27(3): 98-102.


 


He J L, Wei D F, Feng L H, et al. Control strategy of excavator hydraulic system with twin spool valve [J]. Machine Design & Research, 2011, 27(3): 98-102.


 


[5]丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报: 工学版, 2017, 51(6): 1126-1134.


 


Ding R Q, Xu B, Zhang J H. Coupling property of pressure and velocity compound control in individual metering systems[J]. Journal of Zhejiang University: Engineering Science, 2017, 51(6): 1126-1134.


 


[6]Chen G R, Wang J Z, Wang S K, et al. The separate meter in separate meter out control system using dual servo valves based on indirect adaptive robust dynamic surface control[J]. Journal of Systems Science & Complexity, 2019, 32(2): 109-128.


[7]董致新, 黄伟男, 葛磊, . 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180.


 


Dong Z X, Huang W N, Ge L, et al. Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits[J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180.


 


[8]李昭, 谷立臣, 马玉. 变转速液压动力源的负载前馈-反馈复合补偿控制[J]. 中国机械工程, 2016, 27(6): 805-809,832.


 


Li Z, Gu L C, Ma Y. Load feedforward and feedback compounded compensation control for variable speed hydraulic power supply [J]. China Mechanical Engineering, 2016, 27(6): 805-809,832.


 


[9]周蓉, 韩文杰, 谭文. 线性自抗扰控制的适用性及整定[J]. 控制理论与应用, 2018, 35(11): 1654-1662.


 


Zhou R, Han W J, Tan W. On applicability and tuning of linear active disturbance rejection control [J]. Control Theory & Applications, 2008, 35(11): 1654-1662.


 


[10]Zahe B. Energiesparende Scveranderlichem Hydraulischer Antriebe Mit Versorgungsdruck Haltungen Und Ihre Regelung[D]. Aachen: RWTH Aachen University, 1993.


 


[11]汪成文, 刘华, 李标兵. 自抗扰控制进出口独立调节系统性能研究[J]. 哈尔滨工程大学学报, 2021, 42(11): 1679-1687.


 


Wang C W, Liu H, Li B B. Study of the performance of an independent inlet and outlet adjustment system with active disturbance rejection control [J].Journal of Harbin Engineering University, 2021, 42(11): 1679-1687.


 


[12]袁士豪, 殷晨波, 刘世豪. 机械负载敏感定量泵系统性能分析[J]. 农业工程学报, 2013, 29(13): 38-45.


 


Yuan S H, Yin C B, Liu S H. Performance analysis of machinery load sensitive quantitative pump system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 38-45.


 


[13]张鹏, 郭志军. 节流独立控制负载敏感液压系统特性及其仿真分析[J]. 液压与气动, 2021, 45(4): 82-86.


 


Zhang P, Guo Z J. Characteristics and simulation analysis of load sensitive hydraulic system with independent throttle control[J]. Chinese Hydraulics & Pneumatics, 2021, 45(4): 82-86.


 


[14]Herbst G. A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners[J]. Electronics, 2013, 2(3): 246-255.


 


[15]闫小春, 李立青, 张强. 基于Simulink的建筑孔板液压成形机双蓄能器泵控冲压系统仿真分析[J]. 锻压技术, 2021, 46(6): 155-159.


 


Yan X C, Li L Q, Zhang Q. Simulation analysis on double accumulators pump-controlled stamping system in hydroforming machine for building orifice plate based on Simulink [J]. Forging & Stamping Technology, 2021, 46(6): 155-159.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9