网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
双向增压系统应用特性研究
英文标题:Research on application characteristics for bidirectional supercharging system
作者:颜笑鹏1 陈柏金1 张连华2 马海军3 
单位:1. 华中科技大学 材料科学与工程学院 2. 中科聚信洁能热锻装备研发股份有限公司 3. 江苏华威机械制造有限公司 
关键词:锻造液压机 双向增压器 增压回路 节能 液压储能 
分类号:
出版年,卷(期):页码:2022,47(3):191-187
摘要:

 针对锻造液压机系统中部分执行机构需要很高的工作压力,而其余大部分机构所需工作压力比较低的情况,提出了一种基于双向增压器的新型液压储能系统。泵组输出的油液经过增压系统增压后,油液压力得到显著提升,然后与传统液压动力单元一起为主工作缸供能。该系统克服了液压机加工过程中负载的时序性和周期性,因此,在液压系统设计过程中可以选择装机功率更低的电机-泵组单元,从而组成更为经济合理的液压系统。通过仿真结果可知,采用双向增压装置后系统的输出流量保持较高的稳定性与响应性,且与传统液压机相比,具有质量轻、体积小和结构紧凑的优点,应用前景十分广阔。

  For the fact that some actuators in the forging hydraulic press system required high working pressure, while most of the other actuators required relatively low working pressure, a new hydraulic energy storage system based on a bidirectional supercharger was proposed. When the output oil of pump unct was pressurized by the supercharging system, the oil pressure

was significantly improved, and then together with the traditional hydraulic power unit, it supplied energy to the main working cylinder. The system overcomed the timing and periodicity of the load in the process of hydraulic press. Therefore, a motor-pump unit with lower installed power was selected in the hydraulic system design process to form a more economical and reasonable hydraulic system. The simulation results show that the output flow of the system keeps high stability and responsiveness after using the bidirectional supercharging device, and compared with the traditional hydraulic press, it has the advantages of light weight, small volume and compact structure, leading to broad application prospect.

基金项目:
作者简介:
颜笑鹏(1994-),男,博士 E-mail:yanxp@bjut.edu.cn 通信作者:陈柏金(1965-),男,博士,教授 E-mail:chenbaijin@sina.com
参考文献:

 [1]李文, 陈柏金.锻造液压机生产过程能耗分布规律研究[J].液压与气动,2016,(8):112-116.


 


Li W, Chen B J. Energy distribution pattern of forging hydraulic press [J]. Chinese Hydraulics & Pneumatics, 2016,(8):112-116.


 


[2]汪飞雪, 姚静,胡福泰,.锻造液压机振动特性机-液联合仿真[J].中国机械工程,2020,31(10):1175-1182,1189.


 


Wang F X, Yao J, Hu F T, et al. Mechanical-hydraulic co-simulation of vibration characteristics for forging hydraulic presses [J]. China Mechanical Engineering, 2020, 31(10):1175-1182,1189.


 


[3]孔祥东, 刘杰,翟富刚,.基于AMESim的锻造操作机大车行走液压控制系统仿真研究[J].机床与液压,2010,38(13):128-129,107.


 


Kong X D, Liu J, Zhai F G, et al. Simulation research on driving hydraulic control system of forging manipulator based on AMESim [J]. Machine Tool & Hydraulics, 2010, 38(13):128-129,107.


 


[4]陈柏金, 黄树槐,靳龙,.16MN快锻液压机控制系统研究[J].中国机械工程,2008,(8):990-993.


 


Chen B J, Huang S H, Jin L, et al. Development of the control system for 16MN fast forging hydraulic press [J]. China Mechanical Engineering, 2008,(8):990-993.


 


[5]陈柏金, 黄树槐,魏运华,.锻造液压机高压卸载系统改进研究[J].液压与气动,2008,(1):57-59.


 


Chen B J, Huang S H, Wei Y H, et al. Reconstruction of high pressure unloading system for the forging hydraulic press [J]. Chinese Hydraulics & Pneumatics, 2008,(1):57-59.


 


[6]Yan X P, Chen B J, Zhang D W, et al. An energy-saving method to reduce the installed power of hydraulic press machines[J]. Journal of Cleaner Production, 2019, 233: 538-545.


 


[7]陈轶辉, 李洪星,赵树忠,.基于AMESim的液压缸制动过程中重力势能回收系统仿真分析[J].液压与气动,2020, (8):88-92.


 


Chen Y H, Li H X, Zhao S Z, et al. Simulation analysis of gravity potential energy recovery system in hydraulic cylinder braking process based on AMESim [J]. Chinese Hydraulics & Pneumatics, 2020, (8):88-92.


 


[8]叶鹏彦, 赵秋霞,姚平喜,.汽车起重机起升机构液压系统的节能改进[J].液压与气动,2015,(9):52-55.


 


Ye P Y, Zhao Q X, Yao P X, et al. Energy saving improvement of hydraulic system of car crane lifting mechanism [J].Chinese Hydraulics & Pneumatics, 2015,(9):52-55.


 


[9]曹艳, 戴丽莉,邓睿,.矿井提升机液压制动系统的建模与仿真[J].液压与气动,2019,(6):69-74.


 


Cao Y, Dai L L, Deng R, et al. Modeling and simulation of hydraulic braking system of mine hoist [J].Chinese Hydraulics & Pneumatics, 2019,(6):69-74.


 


[10]朱晓基, 王强,何晓晖,.一种能量回收回路蓄能器回收效率研究[J].液压与气动,2020,(8):155-160.


 


Zhu X J, Wang Q, He X H, et al. Performance of accumulator recovery efficiency in energy recovery loop [J]. Chinese Hydraulics & Pneumatics, 2020,(8):155-160.


 


[11]Yan X P, Chen B J. Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press [J]. Energy, 2020, 218, 119518.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9