网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
圆柱体压缩过程不同有限元软件求解与影响因素分析
英文标题:Analysis on different finite element software solutions and influencing factors in cylinder compression process
作者:包立1 2 王连刚2 梅瑞斌1 2  王楷2 庞洪轩3 
单位:(1. 东北大学 轧制技术及连轧自动化国家重点实验室 2. 东北大学秦皇岛分校 资源与材料学院 3.河北普阳钢铁集团技术部 
关键词:圆柱体等温压缩 等效塑性应变 主应力法 有限元软件 网格划分 
分类号:
出版年,卷(期):页码:2022,47(3):227-236
摘要:

 利用ANSYSMARCABAQUSDEFORM有限元软件及主应力法求解了Fe-6.5%Si钢圆柱体等温压缩过程的力学特征和变形规律。结果表明:DEFORM的计算速度较快,而ANSYS较慢;软件求解的圆柱体压缩变形显著分为难变形区、自由变形区和易变形区;易变形区中心等效塑性应变值最大约为1.4,难变形区中心等效塑性应变值最小,变形区基本为三向压应力状态。4款有限元软件求解的接触面上的压缩方向应力在难变形区相近,在侧面翻平区域略有差异,载荷计算结果的相对误差小于3%,与实测值相比,平均误差小于10%,计算精度较高;主应力法求解接触应力的误差较大,所得载荷相比软件预测值略大10%。网格划分方式和参数设置对计算结果有重要影响,应结合实验结果调整参数设置以提高其求解精度和可靠性。

 The mechanical characteristics and deformation laws of Fe-6.5%Si steel cylinder during isothermal compression process were solved by FE softwares including ANSYS, MARC, ABAQUS, DEFORM and principal stress method. The results show that the calculation speed of DEFORM is faster, while that of ANSYS is slower. The compressive deformation of cylinder solved by softwares is significantly divided into difficult deformation area, free deformation area and easy deformation area, the maximum equivalent plastic strain value in the center of the easy deformation area is about 1.4, the equivalent plastic strain value in the center of the difficult deformation area is the smallest, and the deformation area is basically in three-dimensional compressive stress state. Moreover, the compressive direction stresses on the contact surface solved by four kinds of different FE softwares are similar in the difficult deformation area and slightly different in the lateral flattening area. The relative error of load calculation result is less than 3%, the average error compared with measured value is less than 10%, and the calculation accuracy is relatively high. However, the error of compressive stress solved by principal stress method is larger, and the obtained load is slightly larger than the software predicted value by 10%. Thus, the meshing method and parameters setting have an important influence on the calculation results, and the parameters setting should be adjusted in combination with the experimental results to improve the accuracy and reliability of the solution.

基金项目:
河北省自然科学基金钢铁联合基金项目(E2018501016);河北省教育厅精品课程建设项目(2020JPKC061); 东北大学秦皇岛分校教改重点项目(2021JG-A03)
作者简介:
包立(1979-),女,博士,高级实验师 E-mail:baoli1979@126.com 通信作者:梅瑞斌(1979-),男,博士,副教授 E-mail:meiruibin@neuq.edu.cn
参考文献:

 [1]张宇翔, 汤泽军, 许爱军, . Ti55钛合金管电辅助加热气压胀形圆角填充成形规律及多场耦合数值模拟[J]. 锻压技术,2021,46(4):112-120.


 


Zhang Y XTang Z JXu A Jet al. Fillet filling law and multi-field coupling numerical simulation of Ti55 titanium alloy pipe in electric assisted heating bulging [J]. Forging & Stamping Technology2021,46(4):112-120.


 


[2]于华民, 董方, 吴运新, . 大型铝合金C形截面环轧制过程数值模拟和轧制区成形规律分析[J]. 锻压技术,2021,46(11):197-206.


 


Yu H MDong FWu Y Xet al. Numerical simulation on rolling process and analysis on rolling zone forming law for large aluminum alloy C-shaped cross-section ring[J]. Forging & Stamping Technology2021,46(11):197-206.


 


[3]Ablat M A, Qattawi A. Numerical simulation of sheet metal forming: A review [J]. International Journal of Advanced Manufacturing Technology, 2017, 89(1-4):1-16.


 


[4]王忠堂, 张宏亮, 杨君宝, . 镁合金网格壁板压弯成形数值模拟及实验研究 [J]. 锻压技术,2020,45(3):14-19.


 


Wang Z TZhang H LYang J Bet al. Numerical simulation and experimental study on bending of magnesium alloy grid panel [J]. Forging & Stamping Technology2020,45(3):14-19.


 


[5]Hu Z, Li J Q. Computer simulation of pipe-bending processes with small bending radius using local induction heating [J]. Journal of Materials Processing Technology, 1999, 91(1-3): 75-79.


 


[6]Bao L, Qi X W, Mei R B, et al. Investigation and modeling of work roll temperature in induction heating by finite element method [J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118: 735-743.


 


[7]Mei R B, Bao L, Li C S, et al. FE analysis of 6063 aluminium profiles with complex cross-section during online quenching processes [J]. Mechanika, 2015, 21(2): 99-106.


[9]Mohamed M S, Foster A D, Lin J G, et al. Investigation of deformation and failure features of AA6082: Experimentation and modeling [J]. International Journal of Machine Tools & Manufacture, 2012, 53(1): 27-38.


 


[10]Singh B K, Singh R J, Kumar R, et al. 3D-thermo-structural simulation of pressure tube-calandria tube behaviour under accident conditions in PHWR using ABAQUS [J]. Nuclear Engineering & Design, 2018, 328: 188-196.


 


[11]Kang G P, Lee K, Yong H K, et al. Implementation of VPSC polycrystal model into rigid plastic finite element method and its application to Erichsen test of Mg alloy [J]. Metals & Materials International, 2017, 23(5): 930-939.


 


[12]梅瑞斌, 包立, 杜永霞, . Fe-6.5%Si钢高温变形过程本构方程 [J]. 钢铁, 2018, 53 (6): 98-102.


 


Mei R B, Bao L, Du Y X, et al. Constitutive equations of Fe-6.5%Si steel at high deformation temperature [J]. Iron and Steel2018, 53 (6): 98-102.


 


[13]彭大暑. 金属塑性加工原理 [M].长沙: 中南大学出版社, 2004.


 


Peng D S. Principle of Metal Plastic Processing [M]. Changsha: Central Sourth University Press, 2004.


 


[14]王平, 崔建忠. 金属塑性成形力学 [M]. 北京: 冶金工业出版社, 2006.


 


 


Wang P, Cui J Z. Mechanics of Metal Plastic Forming [M]. Beijing: Metallurgical Industry Press, 2006.


服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9