[1]张阳, 邵建波, 陈韬, 等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
Zhang Y, Shao J B, Chen T, et al. Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multidirectional forging [J]. Acta Metallurgica Sinica, 2020, 56(5): 723-735.
[2]王武孝, 王娜, 秦子禾, 等. Mg-6Al-1Nd-1.5Gd合金的高温蠕变机制[J]. 特种铸造及有色合金, 2020, 40(4): 360-364.
Wang W X, Wang N, Qin Z H, et al. Creep mechanism of Mg-6Al-1Nd-1.5Gd alloy at high temperature [J]. Special Casting and Nonferrous Alloys, 2020, 40(4): 360-364.
[3]史浩鹏, 李全安, 陈晓亚, 等. Zn对铸态Mg-10Gd-3Sm-0.5Zr合金组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(4): 34-39.
Shi H P, Li Q A, Chen X Y, et al. Effect of Zn on microstructure and mechanical properties of as-cast Mg-10Gd-3SM-0.5Zr alloy [J]. Journal of Materials and Heat Treatment, 2020, 41(4): 34-39.
[4]Li K, Chen Z Y, Chen T, et al. Hot deformation and dynamic recrystallization behaviors of Mg-Gd-Zn alloy with LPSO phases [J]. Journal of Alloys and Compounds, 2019, 792: 894-906.
[5]Wang B Z, Liu C M, Gao Y H, et al. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment [J]. Mater. Sci. Eng., 2017, A702: 22-28.
[6]彭建, 古东懂, 刘正涛, 等. 时效处理和锻压后预变形工艺对Mg-Gd合金组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(2): 30-36.
Peng J, Gu D D, Liu Z T, et al. Effect of aging treatment and pre-deformation process on microstructure and mechanical properties of Mg-Gd alloy [J]. Journal of Materials and Heat Treatment, 2020, 41(2): 30-36.
[7]李金宝, 周古昕, 杨润田, 等. 轧态Mg-Gd-Y-Zr合金显微组织及耐腐蚀性能研究[J]. 兵器材料科学与工程, 2020, 43(2): 42-47.
Li J B, Zhou G X, Yang R T, et al. Study on microstructure and corrosion resistance of rolled Mg-Gd-Y-Zr Alloy [J]. Ordnance Materials Science and Engineering, 2020, 43(2): 42-47.
[8]Li Y X, Zhu G Z, Qiu D, et al. The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg-RE based alloys [J]. Journal of Alloys and Compounds, 2016, 660: 252-257.
[9]于建民, 屈晓晓, 张治民, 等. 成形温度对Mg-13Gd-4Y-2Zn-0.5Zr合金旋转反锻压变形组织和性能的影响[J]. 塑性工程学报, 2019, 26(6): 7-15.
Yu J M, Qu X X, Zhang Z M, et al. Effect of forming temperature on deformation microstructure and properties of Mg-13Gd-4Y-2Zn-0.5Zr alloy by rotary reverse forging [J]. Journal of Plasticity Engineering, 2019, 26(6): 7-15.
[10]Liu W, Zhang J S, Wei L Y, et al. Extensive dynamic recrystallized grains at kink boundary of 14H LPSO phase in extruded Mg92Gd3Zn1Li4 alloy [J]. Mater. Sci. Eng., 2017, A681: 97-102.
[11]Shao X H, Yang Z Q, Ma X L. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure [J]. Acta Mater., 2010, 58: 4760-4771.
[12]寇鑫, 于建民, 刘海军, 等. Mg-13Gd-4Y-2Zn-0.5Zr合金形变软化行为及本构方程建立[J]. 锻压技术, 2020, 45(3): 166-173.
Kou X, Yu J M, Liu H J, et al. Deformation softening behavior and constitutive equation establishment of Mg-13Gd-4Y-2Zn-0.5Zr alloy [J]. Forging & Stamping Technology, 2020, 45(3): 166-173.
[13]Wu J, Ikeda K I, Shi Q, et al. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy [J]. Mater. Charact., 2019, 148: 233-242.
[14]姚怀, 刘亚, 杜三明, 等. 时效处理对Mg-2.0Zn-0.5Zr-3.0Gd生物降解镁合金组织、力学性能及耐腐蚀性能的影响[J]. 中国有色金属学报, 2020, 30(3): 518-529.
Yao H, Liu Y, Du S M, et al. Effect of aging treatment on microstructure, mechanical properties and corrosion resistance of Mg-2.0Zn-0.5Zr-3.0Gd biodegradable magnesium alloy [J]. Chinese Journal of Nonferrous Metals, 2020, 30(3): 518-529.
[15]邓丽萍, 崔凯旋, 汪炳叔,等. AZ31 镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
Deng L P, Cui K X, Wang B S, et al. Microstructure and texture evolution of AZ31 Mg alloy processed by multi-pass compressing under room temperature [J]. Acta Metall. Sin., 2019, 55(8): 976-986.
|