网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
考虑成形损伤的DP980钢板GISSMO失效模型开发及试验验证
英文标题:Development on failure model GISSMO of DP980 steel sheet and experimental verification considering forming damage
作者:陈自凯1 2 张骥超1 2 徐晨阳1 2 
单位:1. 宝山钢铁股份有限公司 2. 汽车用钢开发与应用技术国家重点实验室(宝钢) 
关键词:成形损伤 GISSMO失效模型 应力状态 DP980钢板 断裂失效 
分类号:TG146
出版年,卷(期):页码:2022,47(4):110-118
摘要:

 以第3代超高强钢DP980为研究对象,设计6种特征拉伸试样来获取不同的应力状态,以及应变路径下的极限应变,开发GISSMO失效模型并完成试样级别的仿真标定,同时基于单向拉伸试样的对标获取网格尺寸修正系数。以理论推导的方式计算帽形梁的折弯损伤,确定折弯半径,设计帽形梁准静态三点弯曲试验和帽形梁动态轴向压溃试验,基于已开发的GISSMO失效模型,利用DYNA完成帽形梁折弯仿真并获取折弯后的初始损伤,最后引入初始损伤并完成试验的仿真对标。结果表明,考虑初始损伤后,GISSMO失效模型的仿真结果与试验结果更吻合,表明在发生较大的加工初始损伤时必须考虑成形初始损伤。

 

 For the third generation ultra-high strength steel DP980, six kinds of characteristic tensile specimens were designed to obtain different stress states and ultimate strains under different strain paths, and the failure model GISSMO was developed. Then, the simulation calibration of specimen level was completed, and the grid size correction coefficient was obtained based on the benchmarking of unidirectional tensile specimens. Furthermore, the bending damage of cap-shaped beam was calculated by theoretical derivation, and the bending radius was determined. In addition, the quasi static three-point bending experiment and dynamic axial collapse experiment of cap-shaped beam were designed, based on the developed failure model GISSMO, the bending simulation of cap-shaped beam was completed by DYNA to obtain the initial damage value after bending. Finally, the simulation benchmarking was completed by introducing the initial damage. The results show that the simulation results of failure model GISSMO are more consistent with the experimental results after considering initial damage, which indicates that the forming initial damage must be considered when the larger machining initial damage occurs. 

 
基金项目:
国家重点研发计划资助项目(2017YFB0304403)
作者简介:
作者简介:陈自凯(1988-),男,硕士,工程师 E-mail:chenzikai@baosteel.com
参考文献:

 [1]Anantharam Sheshadri,Hamid Keshthar,Ashutosh Patil, et al. Experince with material and fracture modeling at FCA US LLC [A]. The 15th International LS-DYNA User Conference [C]. Koblenz,2018.


[2]Gang Huang, Sriram Sadagopan, Hong Zhu, et al. Fracture prediction and correlation of alsi hot stamped steels with different models in LS DYNA [A]. The 15th International LS-DYNA User Conference [C]. Koblenz,2018.

[3]Chen X, Chen G, Huang L. Validation of Gismo model for fracture prediction of a third generation advanced high strength steel [A]. WCX World Congress Experience [C]. Detroit,2018.

[4]杨婷, 熊自柳,孙力,等. 汽车用先进高强钢韧性断裂模型的研究与应用进展[J]. 锻压技术,2021,46(1):10-16.

Yang T,Xiong Z L,Sun L,et al. Research and application progress on ductile fracture model of advanced high strength steel (AHSS) for automotive [J]. Forging & Stamping Technology,2021, 46(1):10-16.

[5]潘利波, 左治江,周文强,等. 双相钢的成形与断裂极限性能分析[J]. 锻压技术,2021,46(7):185-189.

Pan L B, Zuo Z J,Zhou W Q,et al. Analysis on forming and fracture limit properties for dual phase steel[J]. Forging & Stamping Technology,2021,46(7):185-189.

[6]Qian L Y,Fang G,Zeng P,et al. Experimental and numerical investigations into the ductile fracture during the forming of flat-rolled 5083-O aluminum alloy sheet[J]. Journal of Materials Processing Technology,2015,220:264-275.

[7]Basaran M. Stress State Dependent Damage Modeling with a Focus on the Lode Angle Influence[D]. Aachen:Rheinisch-Westf Lischen Technischen Hochschule Aachen,2011.

[8]Mattiasson K,Jergeus J,Dubois P. On the prediction of failure in metal sheets with special reference to strain path dependence[J]. International Journal of Mechanical Sciences,2014,88:175-191.

[9]Lian C W, Lin J P, Hu W L, et al. Accurate modeling of experimental strain-hardening characteristics for series of high strength steel[A]. Proceedings of NUMIFORM 2019[C]. Portsmouth,2019.

[10]Neukamm F,Feucht M,Bischoff M. On the application of continuum damage models to sheet matel forming simulations[J]. Ibai Publishing,2008,(4):616-629.

[11]祁爽, 蔡力勋,包陈,等. 基于应力三轴度的材料颈缩和破断行为分析[J]. 机械强度,2015,182(6):1152-1158.

Qi S,Cai L X,Bao C,et al. Analysis of necking and breaking behavior of materials based on stress triaxiality[J]. Mechanical Strength,2015,182(6):1152-1158.

[12]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.

[13]Effelsberg J,Haufe A,Feucht M,et al. On parameter identification for the GISSMO damage model[A]. Proceedings of the 12th International LS-DYNA Users Conference[C]. Dearborn,2012.

[14]Livermore Software Technology Corpo-Ration. LS-Dyna keyword user′s manual[R].California:LSTC,2013.

[15]徐芝纶. 弹性力学[M].北京:高等教育出版社,1990.

Xu Z L. Elasticity [M]. Beijing: Higher Education Press, 1990.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9