[1]吕陶梅, 王西建,陶江平.曲轴模具的堆焊修复工艺研究[J].模具工业,2014,40(10):66-71.
Lyu T M, Wang X J, Tao J P. The surfacing process of die for crankshaft[J]. Die & Mould Industry, 2014,40(10):66-71.
[2]孙建丽, 高文良.曲轴模具材料的堆焊性能研究[J].铸造技术,2015,36(3):755-758.
Shun J L, Gao W L. Study on welding performance of crankshaft die materials[J]. Foundry Technology,2015,36(3):755-758.
[3]Falk B, Engel U, Geiger M. Estimation of tool life in bulk metal forming based on different failure concepts[J]. Journal of Materials Processing Technology, 1998, 80-81: 602-607.
[4]Li Q, Wang D F, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aviation Manufacturing Technology, 2018, 61(3): 74-89.
[5]杨光, 彭晖杰, 李长富, 等. 电弧增材制造5356铝合金的组织与性能研究[J].稀有金属,2020,44(3):249-255.
Yang G, Pen J J, Li C F, et al. Microstructure and mechanical property research on wire+arc additive manufactured 5356-aluminum alloy[J]. Chinese Journal of Rare Metals,2020, 44(3):249-255.
[6]常坤, 梁恩泉,张韧,等.金属材料增材制造及其在民用航空领域的应用研究现状[J].材料导报,2021,35(3):3176-3182.
Chang K, Liang E Q, Zhang R, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports,2021,35(3):3176-3182.
[7]Ding D H, Pan Z X, Cuiuri D, et al. Process planning for robotic wire and arc additive manufacturing[A]. 2015 IEEE 10th Conference on Industrial Electronics and Applications[C]. New Zealand, 2015.
[8]Shassere B, Nycz A, Noakes M W, et al. Correlation of microstructure and mechanical properties of metal big area additive manufacturing[J]. Applied Science-basel, 2019, 9:1-15
[9]Evjemo L D, Langelandsvik G, Gravdah J T. Wire arc additive manufacturing by robot manipulator: Towards creating [J]. IFAC, 2019, 52-11:103-109.
[10]Lei Y, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics,2020,16(1):454-464.
[11]Liu F, Liu L. A time optimal trajectory generation method for joint robot workspace[J]. Information Technology and Informatization, 2019, 7:26-28.
[12]Adama Diourté, Bugarin F, Bordreuil C, et al. Continuous three-dimensional path planning (CTPP) for complex thin parts with wire arc additive manufacturing[J]. Additive Manufacturing, 2020, 37:101622.
[13]张建生, 周杰,肖贵乾,等.复杂型腔锻模电弧增材再制造分层切片方法[J].华中科技大学学报:自然科学版,2021,49(1):43-49.
Zhang J S, Zhou J, Xiao G Q, et al. Hierarchy slicing method for wire arc additive remanufacturing process of complex-cavity forging dies[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition,2021,49(1):43-49.
[14]郑华辉, 吕俊,余振宇.内燃机用激光增材制造Ti600合金原位拉伸组织演变分析[J].锻压技术,2020,45(5):180-184.
Zheng H H, Lyu J, Yu Z Y. Evolution analysis on in-situ tensile microstructure of Ti600 alloy manufactured by laser additive for internal combustion engine[J]. Forging & Stamping Technology, 2020,45(5):180-184.
[15]邵坦, 李轶峰,吴强,等.机器人电弧熔丝增材制造扫描路径生成算法研究[J].热加工工艺,2019,48(5):220-225.
Shao T, Li Y F, Wu Q, et al. Research on scanning path generation algorithm of robotic arc wire additive manufacturing[J]. Hot Working Technology, 2019, 48(5):220-225.
[16]方力, 侯智文,黄俊润,等.电弧熔丝增材制造复合填充路径规划算法[J].南京航空航天大学学报,2019,51(1):98-104.
Fang L, Hou Z W, Huang J R, et al. Composite filling path planning algorithm for wire and ARC additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(1):98-104.
|