网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车曲轴热锻模焊锻复合电弧熔丝自动增材制造工艺
英文标题:Automatic additive manufacturing of arc fuse welding and forging composite for auto crankshaft hot forging mold
作者:洪小英1 2 肖贵乾2 3 权国政2 
单位:1.四川信息职业技术学院 2. 重庆大学 3. 重庆佛思坦智能装备有限公司 
关键词:电弧熔丝 焊锻复合 增材制造 残余应力 锤击 焊接 曲轴热锻模具 
分类号:TG315.2
出版年,卷(期):页码:2022,47(4):170-175
摘要:

 为了提高曲轴模具的服役寿命和降低再制造成本,提出了焊锻复合电弧熔丝自动增材制造工艺,并开发了相应的软件和硬件系统。在该工艺中,曲轴模具的增材目标模型被分层切片和轨迹规划,并将锤击轨迹和焊接轨迹重合从而将每一道焊缝均进行焊后锤击。锤击分析表明,焊后锤击能够将焊缝残余拉应力矫正为残余压应力,提高焊缝的力学性能。自动增材制造工艺中模具被随形增材,而人工修复模具则采用满焊工艺,因此,自动增材制造工艺能够大幅节省材料大约50%以上,降低焊接时间50%以上。在服役8000件后,自动修复模具的压塌区域和压塌量显著少于人工修复模具,此外表面微裂纹的数量也得到了大幅降低,使得模具的服役寿命大幅提高。

 

 In order to improve the service life of crankshaft mold and reduce the cost of remanufacturing, an automatic additive manufacturing process of arc fuse welding and forging composite was proposed, and the corresponding software and hardware systems were developed. Then, the additive target model of crankshaft mold was sliced in layers and planned in tracks, and the hammering track and welding track were overlapped so that each weld seam was hammered after welding in this process. The hammering analysis shows that the hammering after welding can correct the residual tensile stress of the weld seam to residual compressive stress and improve the mechanical properties of the welding seam. In the automatic additive manufacturing process, the mold is added conformally, while the manual repair of mold adopts the full welding process, so the automatic additive manufacturing process can greatly save more than 50% of material and reduce the welding time by more than 50%. After serving 8000 pieces, the collapse area and collapse amount of the automatic-repair mold are significantly less than that of the manual-repair mold, and in addition, the amount of surface micro-cracks is also greatly reduced, which greatly improves the service life of mold.

基金项目:
四川信息职业技术学院 新增科技平台课题(2018KC214);国家重点研发计划资助项目(2018YFB1106504)
作者简介:
作者简介:洪小英(1981-),女,硕士,高级工程师 E-mail:20160989002@cqu.edu.cn
参考文献:

 [1]吕陶梅, 王西建,陶江平.曲轴模具的堆焊修复工艺研究[J].模具工业,2014,40(10):66-71.


Lyu T M, Wang X J, Tao J P. The surfacing process of die for crankshaft[J]. Die & Mould Industry, 2014,40(10):66-71.

[2]孙建丽, 高文良.曲轴模具材料的堆焊性能研究[J].铸造技术,2015,36(3):755-758.

Shun J L, Gao W L. Study on welding performance of crankshaft die materials[J]. Foundry Technology,2015,36(3):755-758.

[3]Falk B, Engel U, Geiger M. Estimation of tool life in bulk metal forming based on different failure concepts[J]. Journal of Materials Processing Technology, 1998, 80-81: 602-607.

[4]Li Q, Wang D F, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aviation Manufacturing Technology, 2018, 61(3): 74-89.

[5]杨光, 彭晖杰, 李长富, 等. 电弧增材制造5356铝合金的组织与性能研究[J].稀有金属,2020,44(3):249-255.

Yang G, Pen J J, Li C F, et al. Microstructure and mechanical property research on wire+arc additive manufactured 5356-aluminum alloy[J]. Chinese Journal of Rare Metals,2020, 44(3):249-255.

[6]常坤, 梁恩泉,张韧,等.金属材料增材制造及其在民用航空领域的应用研究现状[J].材料导报,2021,35(3):3176-3182.

Chang K, Liang E Q, Zhang R, et al. Status of metal additive manufacturing and its application research in the field of civil aviation[J]. Materials Reports,2021,35(3):3176-3182.

[7]Ding D H, Pan Z X, Cuiuri D, et al. Process planning for robotic wire and arc additive manufacturing[A]. 2015 IEEE 10th Conference on Industrial Electronics and Applications[C]. New Zealand, 2015.

[8]Shassere B, Nycz A, Noakes M W, et al. Correlation of microstructure and mechanical properties of metal big area additive manufacturing[J]. Applied Science-basel, 2019, 9:1-15

[9]Evjemo L D, Langelandsvik G, Gravdah J T. Wire arc additive manufacturing by robot manipulator: Towards creating [J]. IFAC, 2019, 52-11:103-109.

[10]Lei Y, Ding D H, Pan Z X, et al. Application of multidirectional robotic wire arc additive manufacturing process for the fabrication of complex metallic parts[J]. IEEE Transactions on Industrial Informatics,2020,16(1):454-464.

[11]Liu F, Liu L. A time optimal trajectory generation method for joint robot workspace[J]. Information Technology and Informatization, 2019, 7:26-28.

[12]Adama Diourté, Bugarin F, Bordreuil C, et al. Continuous three-dimensional path planning (CTPP) for complex thin parts with wire arc additive manufacturing[J]. Additive Manufacturing, 2020, 37:101622.

[13]张建生, 周杰,肖贵乾,等.复杂型腔锻模电弧增材再制造分层切片方法[J].华中科技大学学报:自然科学版,2021,49(1):43-49.

Zhang J S, Zhou J, Xiao G Q, et al. Hierarchy slicing method for wire arc additive remanufacturing process of complex-cavity forging dies[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition,2021,49(1):43-49.

[14]郑华辉, 吕俊,余振宇.内燃机用激光增材制造Ti600合金原位拉伸组织演变分析[J].锻压技术,2020,45(5):180-184.

Zheng H H, Lyu J, Yu Z Y. Evolution analysis on in-situ tensile microstructure of Ti600 alloy manufactured by laser additive for internal combustion engine[J]. Forging & Stamping Technology, 2020,45(5):180-184.

[15]邵坦, 李轶峰,吴强,等.机器人电弧熔丝增材制造扫描路径生成算法研究[J].热加工工艺,2019,48(5):220-225.

Shao T, Li Y F, Wu Q, et al. Research on scanning path generation algorithm of robotic arc wire additive manufacturing[J]. Hot Working Technology, 2019, 48(5):220-225.

[16]方力, 侯智文,黄俊润,等.电弧熔丝增材制造复合填充路径规划算法[J].南京航空航天大学学报,2019,51(1):98-104.

Fang L, Hou Z W, Huang J R, et al. Composite filling path planning algorithm for wire and ARC additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(1):98-104.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9