网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
阀控负载敏感系统流量前馈PID控制及压降仿真分析
英文标题:Flow feedforward PID control and pressure drop simulation analysis of valve-controlled load sensing system
作者:牛瑞利1 邱益2 王博3 
单位:1. 郑州工业应用技术学院 2. 郑州大学 3. 河南中原重型锻压有限公司 
关键词:液压系统 阀控 负载敏感系统 流量前馈 压降分析 
分类号:TH137
出版年,卷(期):页码:2022,47(4):195-199
摘要:

 为了提高阀控负载敏感系统的控制精度,采用伺服电机与变量泵构建泵源,实现对液压泵转速与流量的同步调节,提升系统的稳定性。在给出负载敏感系统数学模型和位置环控制方法的基础上,对负载敏感系统特性进行分析。利用AMESim建立了以转速调节方式实现的负载敏感系统仿真模型,验证了控制方法的准确性。研究结果表明:在泵控子系统内设置流量前馈后,能够有效地降低节流口的压降波动性。在存在流量前馈的条件下,系统的跟踪误差降低,可见设置流量前馈后能够降低节流口的压差波动,使系统达到更高的位置跟踪精度。系统节流口压降达到了与压力指令相近的状态,总体表现为节流口压降增大后,位置误差减小。随着压差指令的下降,系统获得了更高的能效。

 In order to improve the control accuracy of valve-controlled load sensitive system, the servo motor and variable pump were used to build the pump source to realize the synchronous adjustment of rotating speed and flow of hydraulic pump, and the stability of system was improved, and based on the mathematical model of load sensitive system and the control method of position loop, the characteristics of load sensitive system were analyzed. Then, by adjusting rotating speed method, the simulation model of load sensitive system was established by AMESim, and the accuracy of the control method was verified. The results show that the pressure drop fluctuation can be reduced effectively by setting the flow feedforward in the pump control subsystem. Under the condition of flow feedforward, the tracking error of the system is reduced. It can be seen that the setting of flow feedforward can reduce the pressure difference fluctuation at the throttle orifice and make the system achieve higher position tracking accuracy. The pressure drop at the throttle orifice of the system reaches a state close to the pressure instruction. As a whole, the position error decreases with the increasing of pressure drop at the throttle orifice. Thus, as the pressure difference instruction decreases, the system gains higher energy efficiency.

基金项目:
河南省重点研发与推广科技攻关项目(192102210224)
作者简介:
作者简介:牛瑞利(1981-),女,硕士,副教授 E-mail:csllong@163.com
参考文献:

 [1]汪小芳,张军,迪茹侠. 基于AMESim的负载敏感液压系统防冲击特性的研究[J]. 液压与气动, 2018,(11): 55-60.


Wang X F, Zhang J, Di R X. Research on impact resistance characteristics of load sensitive hydraulic system based on AMESim [J]. Chinese Hydraulics & Pneumatics, 2018, (11): 55-60.

[2]娄天祥, 丁海港, 董娇, 等. 煤矿液压绞车电液比例闭环驱动系统设计与仿真分析[J]. 液压与气动, 2019, (6): 63-68. 

Lou T X, Ding H G, Dong J, et al. Design and simulation analysis of electro-hydraulic proportional closed loop drive system for coal mine hydraulic winch [J]. Chinese Hydraulics & Pneumatics, 2019, (6): 63-68. 

[3]闫小春, 李立青, 张强. 基于Simulink的建筑孔板液压成形机双蓄能器泵控冲压系统仿真分析[J]. 锻压技术, 2021, 46(6): 155-159.

Yan X C, Li L Q, Zhang Q. Simulation analysis on double accumulators pump-controlled stamping system in hydroforming machine for building orifice plate based on Simulink [J]. Forging & Stamping Technology, 2021, 46(6): 155-159.

[4]Mikhail P, Qiang L. Multimode active control of friction, dynamic ratchets and actuators [J]. Physical Mesomechanics, 2018, 21(1):24-31. 

[5]胡知诿, 谢志江, 李坤, 等. 基于扰动观测器的液压冗余直驱平台同步控制[J]. 组合机床与自动化加工技术,2021,(1): 118-121. 

Hu Z Q, Xie Z J, Li K, et al. Synchronous control of hydraulic redundant direct drive platform based on disturbance observer [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021,(1):118-121. 

[6]钱占松. 三通阀控单作用缸在电液位置伺服系统的应用研究[J]. 液压与气动, 2020,(6): 127-134. 

Qian Z S. Application research of three-way valve controlled single-acting cylinder in electro-hydraulic position servo system [J]. Chinese Hydraulics & Pneumatics, 2020, (6): 127-134. 

[7]石家庆, 张建新, 张震. 阀控缸液压系统变负载工况速度稳定性研究[J]. 液压与气动, 2020,(4): 153-159. 

Shi J Q, Zhang J X, Zhang Z. Study on velocity stability of valve controlled cylinder hydraulic system under variable load [J]. Chinese Hydraulics & Pneumatics, 2020,(4): 153-159. 

[8]Chen G R, Wang J Z, Wang S K, et al. The separate meter in separate meter out control system using dual servo valves based on indirect adaptive robust dynamic surface control[J]. Journal of Systems Science & Complexity, 2019, 32(2): 557-576. 

[9]董致新, 黄伟男, 葛磊, 等. 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180. 

Dong Z X, Huang W N, Ge L, et al. Study on characteristics of hydraulic excavator with combined pump valve inlet and inlet [J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180. 

[10]李昭, 谷立臣, 马玉. 变转速液压动力源的负载流量前馈-反馈复合补偿控制[J]. 中国机械工程, 2016, 27(6): 805-809.

Li Z, Gu L C, Ma Y. China mechanical engineering load feed-forward feedback composite compensation control for hydraulic power source with variable speed [J]. China Mechanical Engineering, 2016, 27(6): 805-809. 

[11]许玲玲, 延皓. 阀控缸系统有限时间滑模控制[J]. 液压与气动, 2019, (6): 94-100. 

Xu L L, Yan H. Finite time sliding mode control for valve controlled cylinder system [J]. Hydraulic & Pneumatics, 2019, (6): 94-100. 

[12]王鑫涛, 杜星. 基于负载匹配的阀控液压缸匹配特性研究[J]. 液压与气动, 2019, (5): 117-121. 

Wang X T, Du X. Research on matching characteristics of valve controlled hydraulic cylinder based on load matching [J]. Chinese Hydraulics & Pneumatics, 2019, (5): 117-121. 

[13]Lovrec D, Kastrevc M, Ulaga S. Electro-hydraulic load sensing with a speed-controlled hydraulic supply system on forming-machines[J]. The International Journal of Advanced Manufacturing Technology, 2009, 41(11-12): 1066-1075.

[14]刘伟. 挖掘机电液流量匹配控制系统特性研究[D]. 杭州:浙江大学, 2012.

Liu W. Research on Characteristics of Hydraulic Flow Matching Control System for Mining Machinery [D]. Hangzhou: Zhejiang University, 2012.

[15]徐兵,丁孺琦,张军辉. 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报:工学版, 2015, 49(1): 93-101. 

Xu B, Ding R Q, Zhang J H. Experimental study of load port independent system based on joint control of pump and valve [J]. Journal of Zhejiang University: Engineering Science, 2015, 49(1): 93-101. 

[16]周蓉, 韩文杰, 谭文. 线性自抗扰控制的适用性及整定[J]. 控制理论与应用, 2018, 35(11): 1654-1662. 

Zhou R, Han W J, Tan W. Applicability and tuning of linear active disturbance rejection control [J]. Control Theory and Application, 2008, 35(11): 1654-1662. 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9