[1]日本钛协会. 钛材料及其应用[M]. 周连在,译. 北京:冶金工业出版社, 2008.
Japan Titanium Association. Titanium Material and Its Application [M]. Translated by Zhou L Z. Beijing:Metallurgical Industry Press, 2008.
[2]Kassab M M, Cohen R E. The etiology and prevalence of gingival recession [J]. Journal of the American Dental Association, 2003, 134 (2): 220-225.
[3]宋长辉, 杨永强, 王赟达, 等. CoCrMo合金激光选区熔化成型工艺及其性能研究[J]. 中国激光, 2014, 41 (6): 58-65.
Song C H, Yang Y Q, Wang Y D, et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting [J]. Chinese Journal of Lasers, 2014, 41 (6): 58-65.
[4]田甜, 余占海, 高勃. 激光快速成形钴铬合金的生物安全性评价[J]. 实用口腔医学杂志,2012, 28 (2): 151-155.
Tian T, Yu Z H, Gao B. Biological safety of Co-Cr alloy fabricated by laser rapid forming method [J]. Journal of Practical Stomatology, 2012,28 (2): 151-155.
[5]赵铭, 郑启新. 人工关节材料的研究进展[J]. 生物骨科材料与临床研究, 2004,1 (7): 53-56.
Zhao M, Zheng Q X. Research progress on materials of prosthesis [J]. Orthopaedil Biomechanics Materials and Clinical Study, 2004,1 (7): 53-56.
[6]Vidal C V, Munoz A I. Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy [J]. Electrochimica Acta, 2011,56 (24): 8239-8248.
[7]Hiromoto S, Onodera E, Chiba A, et al. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys [J]. Biomaterials, 2005, 26 (24): 4912-4923.
[8]Julian L C, Munoz A I. Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids [J]. Tribology International, 2011, 44 (3): 318-329.
[9]Yamanaka K, Mori M, Chiba A, et al. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability [J]. Acta Biomaterialia, 2013, 9 (4): 6259-6267.
[10]Niinomi M, Narushima T, Nakai M. Advances in Metallic Biomaterials-Processing and Applications [M]. Springer Series in Biomaterials Science and Engineering, 2015.
[11]林莺莺, 唐志今, 林海, 等. 钴铬钼合金的精密锻造工艺研究[J]. 航空材料学报, 2011, 31 (Z1): 19-21.
Lin Y Y, Tang Z J, Lin H, et al. Precision forging technology of CoCrMo alloy [J]. Journal of Aeronautical Materials, 2011, 31 (Z1): 19-21.
[12]王以华, 吴振清, 陈修琳, 等. 型砧几何尺寸对大锻件锻造孔隙闭合的影响[J]. 金属加工:热加工, 2013, (1): 22-25.
Wang Y H, Wu Z Q, Chen X L, et al. Effect of anvil geometry size on forging pore closure of large forgings [J]. Metal Working:Hot Working, 2013, (1): 22-25.
[13]ISO 5832.12—2019, 外科移植 金属材料 第12部分:锻造钴铬钼合金[S].
ISO 5832.12—2019, Implants for surgery—Metallic materials—Part 12: Wrought cobalt-chromium-molybdenum alloy[S].
[14]徐海峰, 曹文全, 俞峰, 等. 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁, 2017, 52 (1): 53-63.
Xu H F, Cao W Q, Yu F, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel [J]. Iron & Steel, 2017, 52 (1): 53-63.
[15]徐海峰, 史智越, 俞峰, 等. 高氮不锈轴承钢的微观组织与性能研究[J]. 特殊钢, 2021, 42 (1): 71-76.
Xu H F, Shi Z Y, Yu F, et al. Study on microstructure and properties of high nitrogen stainless bearing steel [J]. Special Steel, 2021, 42 (1): 71-76.
[16]陈修琳, 陈岩. 铍青铜薄壁管径向锻造工艺研究[J]. 锻压技术, 2018, 43 (8): 23-26,34.
Chen X L, Chen Y. Study on radial forging process of beryllium bronze thin-walled tube [J]. Forging & Stamping Technology, 2018, 43 (8): 23-26, 34.
|