网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
含氮CoCrMo合金锻造工艺
英文标题:Forging process for N-containing CoCrMo alloy
作者:王雷 顾怀章 孙岳来 邓军 马步洋 
单位:凯里学院 美特林科特殊合金股份有限公司 
关键词:含氮CoCrMo合金 分段锻造 热包覆保温 力学性能 氮化物 
分类号:TG319
出版年,卷(期):页码:2022,47(5):1-4
摘要:

 通过热包覆保温方法,使用快锻机对含氮CoCrMo合金电渣锭进行了开坯锻造试验,研究了在1150 ℃始锻温度时该合金在热包覆保温情况下的可锻性。试验采用摔圆、拔长的锻造方法,对含氮CoCrMo合金圆棒坯料进行两端分段锻造。试验结果表明:含氮CoCrMo合金在1150 ℃热包覆保温2.5 h后采用分段锻造,获得的材料屈服强度为623.9 MPa、抗拉强度为933.9 MPa、伸长率为20.3%、硬度为27.5 HRC,各项力学性能均满足要求;合金中的氮化物提高了材料的性能及晶粒细化程度,锻造后锻料的晶粒度不大于5.5级,晶粒度满足要求。通过热包覆分段锻造方法,成功对含氮CoCrMo合金电渣锭进行了锻造。

 Through the method of hot wrap and heat preservation, the blanking and forging test of N-containing CoCrMo alloy electroslag ingot was carried out by rapid forging machine, and the malleability of the alloy under the condition of hot wrap and heat preservation at the initial forging temperature of 1150 ℃ was studied. Then, the forging method of rounding and streching was adopted in the test, and the two ends of N-containing CoCrMo alloy bar blank were forged in sections. The test results show that the N-containing CoCrMo alloy is forged in sections after being hot wrapped at 1150 ℃ for 2.5 h, its yield strength is 623.9 MPa, tensile strength is 933.9 MPa, elongation is 20.3%, and hardness is 27.5 HRC, and all mechanical properties meet the requirements. The nitrides in the alloy is beneficial to improve the properties of material and the grain refinement degree. After forging, the grain size of N-containing CoCrMo alloy after forging is not greater than grade 5.5, and the grain size meets the requirements. Thus, the electroslag ingot of N-containing CoCrMo alloy is successfully forged by the method of hot wrap and sectional forging.

基金项目:
凯里学院博士启动项目(BS201814);省教育厅自然科学研究项目(黔教合KY字[2020]069);国家自然科学基金资助项目(31760191)
作者简介:
作者简介:王雷(1970-),男,博士,副教授,E-mail:2015163582@qq.com
参考文献:

 [1]日本钛协会. 钛材料及其应用[M]. 周连在,译. 北京:冶金工业出版社, 2008.


Japan Titanium Association. Titanium Material and Its Application [M]. Translated by Zhou L Z. BeijingMetallurgical Industry Press, 2008.


[2]Kassab M M, Cohen R E. The etiology and prevalence of gingival recession [J]. Journal of the American Dental Association, 2003, 134 (2): 220-225.


[3]宋长辉, 杨永强, 王赟达, . CoCrMo合金激光选区熔化成型工艺及其性能研究[J]. 中国激光, 2014, 41 (6): 58-65.


Song C H, Yang Y Q, Wang Y D, et al. Research on process and property of CoCrMo alloy directly manufactured by selective laser melting [J]. Chinese Journal of Lasers, 2014, 41 (6): 58-65.


[4]田甜, 余占海, 高勃. 激光快速成形钴铬合金的生物安全性评价[J]. 实用口腔医学杂志,2012, 28 (2): 151-155.


Tian T, Yu Z H, Gao B. Biological safety of Co-Cr alloy fabricated by laser rapid forming method [J]. Journal of Practical Stomatology, 2012,28 (2): 151-155.


[5]赵铭, 郑启新. 人工关节材料的研究进展[J]. 生物骨科材料与临床研究, 2004,1 (7): 53-56.


Zhao M, Zheng Q X. Research progress on materials of prosthesis [J]. Orthopaedil Biomechanics Materials and Clinical Study, 2004,1 (7): 53-56.


[6]Vidal C V, Munoz A I. Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy [J]. Electrochimica Acta, 201156 (24): 8239-8248.


[7]Hiromoto S, Onodera E, Chiba A, et al. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys [J]. Biomaterials, 2005, 26 (24): 4912-4923.


[8]Julian L C, Munoz A I. Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids [J]. Tribology International, 2011, 44 (3): 318-329.


[9]Yamanaka K, Mori M, Chiba A, et al. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability [J]. Acta Biomaterialia, 2013, 9 (4): 6259-6267.


[10]Niinomi M, Narushima T, Nakai M. Advances in Metallic Biomaterials-Processing and Applications [M]. Springer Series in Biomaterials Science and Engineering, 2015.


[11]林莺莺, 唐志今, 林海, . 钴铬钼合金的精密锻造工艺研究[J]. 航空材料学报, 2011, 31 (Z1): 19-21.


Lin Y Y, Tang Z J, Lin H, et al. Precision forging technology of CoCrMo alloy [J]. Journal of Aeronautical Materials, 2011, 31 (Z1): 19-21.


[12]王以华, 吴振清, 陈修琳, . 型砧几何尺寸对大锻件锻造孔隙闭合的影响[J]. 金属加工:热加工, 2013, (1): 22-25.


Wang Y H, Wu Z Q, Chen X L, et al. Effect of anvil geometry size on forging pore closure of large forgings [J]. Metal WorkingHot Working, 2013, (1): 22-25.


[13]ISO 5832.12—2019, 外科移植  金属材料  12部分:锻造钴铬钼合金[S].


ISO 5832.12—2019, Implants for surgery—Metallic materials—Part 12: Wrought cobalt-chromium-molybdenum alloy[S].


[14]徐海峰, 曹文全, 俞峰, . 国内外高氮马氏体不锈轴承钢研究现状与发展[J]. 钢铁, 2017, 52 (1): 53-63.


Xu H F, Cao W Q, Yu F, et al. Current research status and development of domestic and foreign high nitrogen martensitic stainless bearing steel [J]. Iron & Steel, 2017, 52 (1): 53-63.


[15]徐海峰, 史智越, 俞峰, . 高氮不锈轴承钢的微观组织与性能研究[J]. 特殊钢, 2021, 42 (1): 71-76.


Xu H F, Shi Z Y, Yu F, et al. Study on microstructure and properties of high nitrogen stainless bearing steel [J]. Special Steel, 2021, 42 (1): 71-76.


[16]陈修琳, 陈岩. 铍青铜薄壁管径向锻造工艺研究[J]. 锻压技术, 2018, 43 (8): 23-2634.


Chen X L, Chen Y. Study on radial forging process of beryllium bronze thin-walled tube [J]. Forging & Stamping Technology, 2018, 43 (8): 23-26, 34.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9