网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Norton-Hoff粘塑性理论的铝合金拼焊板成形性能预测与实验研究
英文标题:Formability prediction and experimental study on aluminum alloy tailor welded blanks based on Norton-Hoff viscoplastic theory
作者:伍杰 毛祖莉 邹帆 
单位:湖南工学院 
关键词:铝合金拼焊板 成形性能 Norton-Hoff粘塑性理论 极限拱顶高度 成形轮廓线路径 
分类号:TG386
出版年,卷(期):页码:2022,47(5):109-115
摘要:

 铝合金拼焊板是汽车轻量化技术的重要发展方向之一,其成形性能是关键的性能指标参数。采用基于Norton-Hoff粘塑性理论的有限元方法,模拟了AA5754铝合金拼焊板极限拱顶高度实验的成形过程。分析了成形高度分别为20和29 mm时,铝合金拼焊板中应变和位移的分布情况,预测了AA5754铝合金拼焊板的成形性能。在极限拱顶高度实验中,等效应变沿着成形轮廓线路径呈M形对称分布,最大等效应变出现在冲头与板材接触的边缘位置。有限元预测结果与实验结果有着较好的吻合度,极限拱顶高度实验得出,铝合金拼焊板的LDH值为29.5 mm,断裂位置位于冲头与板材接触的边缘。

 Aluminum alloy tailor welded blank is one of the important development directions for automobile lightweight technology, and its formability is a key performance index parameter. Therefore, the forming process of limiting dome height test for AA5754 aluminum alloy tailor welded blank was simulated by the finite element method based on Norton-Hoff viscoplastic theory, and the distribution conditions of strain and displacement in the aluminum alloy tailor welded blank was analyzed when the forming heights were 20 and 29 mm, respectively. Then, the formability of AA5754 aluminum alloy tailor welded blank was predicted. Furthermore, during the limiting dome height test, the equivalent strain was distributed symmetrically in an M-shape along the forming contour path, and the maximum equivalent strain appeared at the contact edge between punch and plate. The conclusion shows that the results of finite element prediction are in good agreement with the test results, and it can be obtained from the limiting dome height test that the LDH value for the aluminum alloy tailor welded blank is 29.5 mm, and the fracture position is located at the contact edge between punch and plate.

基金项目:
湖南省自然科学基金面上项目(2021JJ30205);湖南省教育厅重点项目(19A122);湖南工学院项目(2019HY025);湖南省科技计划项目(2021RC1008)
作者简介:
作者简介:伍 杰(1982-),男,博士,副教授,E-mail:jhydeyouxiang@163.com
参考文献:

[1]宋燕利, 华林. 车身覆盖件拼焊板冲压成形技术的研究现状及发展趋势[J]. 中国机械工程, 2011, 22(1): 111-118.


Song Y L, Hua L. Current research status and trends of tailor welded blanks applied in auto-body stamping [J]. China Mechanical Engineering, 2011, 22(1):111-118.


[2]范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1): 1-16.


Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology [J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16.


[3]陈宇豪, 薛松柏, 王博, . 汽车轻量化焊接技术发展现状与未来[J]. 材料导报, 2019, 33(S2): 431-440.


Chen Y H, Xue S B, Wang B, et al.Development status and future direction of welding technology in the automotive lightweight[J]. Materials Reports, 2019, 33(S2): 431-440.


[4]Hovanski Y, Upadhyay P, Carsley J, et al. High-speed friction-stir welding to enable aluminum tailor-welded blanks[J]. JOM, 2015, 67(5): 1045-1053.


[5]伍杰, 李理, 毛祖莉, . 轻量化汽车用拼焊板冲压成形性能研究现状与展望[J]. 焊接技术, 2019, 48(10): 1-5.


Wu J, Li L, Mao Z L,et al. Research status and prospect of the stamping formability of tailor welded blanks for the application of automobile lightweight [J]. Welding Technology, 2019,48(10):1-5.


[6]Li C, Huang J, Wang K H, et al. Optimization of processing parameters of laser skin welding in vitro combining the response surface methodology with NSGA- II[J]. Infrared Physics & Technology, 2019, 103(1): 103067.


[7]Wang A L, Liu J, Gao H X, et al. Hot stamping of AA6082 tailor welded blanks: Experiments and knowledge-based cloud-finite element (KBC-FE) simulation[J]. Journal of Materials Processing Technology, 2017, 250: 228-238.


[8]Gnibl T, Merklein M. Material flow control in tailor welded blanks by a combination of heat treatment and warm forming[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1): 305-308.


[9]Kesharwani R K, Panda S K, Pal S K. Experimental investigations on formability of aluminum tailor friction stir welded blanks in deep drawing process[J]. Journal of Materials Engineering and Performance, 2015, 24(2): 1038-1049.


[10]聂辉. 2219铝合金搅拌摩擦焊拼焊板流体压力成形破裂机制与预测[D].哈尔滨: 哈尔滨工业大学,2018.


Nie H. Hydro-forming Fracture Theory and Prediction of AA2219 Friction Stir Welding Tailor Welded Blank [D]. HarbinHarbin Institute of Technology2018.


[11]Ma X D, Guan Y P. Theoretical prediction and experimental investigation on formability of tailor-welded blanks[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 228-236.


[12]Paturi U M R, Narala S K R, Kakustam S. Investigations on the effects of different constitutive models in finite element simulation of machining [J]. Materials Today: Proceedings, 2018, 5(11): 25295-25302.


[13]肖兵兵. 考虑变形热和摩擦效应的热力耦合冲压研究[D].长沙:湖南大学,2018.


Xiao B B. Research on Thermal-mechanical Stamping Forming Considering Deformation Heat and Friction Heat Effects[D]. ChangshaHunan University2018.


[14]聂昕, 肖兵兵, 申丹凤, . 考虑变形热和摩擦热效应的热力耦合冲压研究[J]. 中国机械工程, 2020, 31(16): 2005-2015.


Nie X, Xiao B B, Shen D F, et al. Research on thermal-mechanical stamping forming considering deformation heat and friction heat effects[J]. China Mechanical Engineering, 2020,31(16): 2005-2015.


[15]李志, 李庆生, 李诗韵. 基于DIC方法R60702/TA2爆炸焊接复合板力学性能研究[J]. 稀有金属, 2020, 44(8): 826-833.


Li Z, Li Q S, Li S Y. Mechanical properties investigations of explosively welded R60702/TA2 composite plate using digital image correlation[J]. Chinese Journal of Rare Metals2020,44(8):826-833.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9