[1]肖成. 无缝钢管连轧过程建模与轧制规程优化[D].长沙:中南大学, 2014.
Xiao C. Modeling and Rolling Schedule Optimization of Seamless Steel Tube Rolling Process [D].Changsha: Central South University,2014.
[2]汤涛. 无缝钢管连轧过程数值模拟及参数优化[D].衡阳:南华大学,2013.
Tang T. Numerical Simulation and Parameter Optitmzat-ion for Tandem Rolling Process of Seamless Steel Tube [D]. Hengyang:University of South China, 2013.
[3]孟代江. 人工神经网络技术及其应用[J]. 电子技术与软件工程, 2016, (23):16.
Meng D J. Artificial neural network technology and its application [J]. Electronic Technology & Software Engineering,2016, (23):16.
[4]杨源杰, 黄道.人工神经网络算法研究及应用[J].华东理工大学学报:自然科学版,2002,28(5):551-554.
Yang Y J, Huang D.Research and application of artificial neural networks [J].Journal of East China University of Science and Technology:Natural Science Edition, 2002,28(5):551-554.
[5]刘翰培, 汪宇轩,王亚琴,等.深度神经网络轧制力建模及其并行优化研究[J/OL].控制工程:1-8[2021-03-24].DOI:10.14107/j.cnki.kzgc.20200277.
Liu H P, Wang Y X, Wang Y Q, et al.Research on rolling force modeling and parallel optimization of deep neural network [J/OL] Control Engineering of China: 1-8[2021-03-24].DOI:10.14107/j.cnki.kzgc.20200277.
[6]马威, 李维刚,赵云涛,等.基于深度学习的热连轧轧制力预测[J].钢铁研究学报,2019,31(9):805-815.
Ma W, Li W G, Zhao Y T, et al. Prediction of hot-rolled roll force based on deep learning [J]. Journal of Iron and Steel Research,2019,31 (9):805-815.
[7]Bagheripoor M, Bisadi H . Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process[J]. Applied Mathematical Modelling, 2013, 37(7):4593-4607.
[8]陈鑫, 朱明杰,吴敏,等.结合机理计算与神经网络预测的无缝钢管轧制力建模[J].冶金自动化,2015,39(4):32-37.
Chen X, Zhu M J, Wu M, et al. Rolling force modeling for seamless steel pipe combining mechanism model and neural network prediction [J]. Metallurgical Industry Automation, 2015,39(4):32-37.
[9]宋勇, 苏岚,荆丰伟,等.热轧带钢轧制力模型自学习算法优化[J].北京科技大学学报,2010,32(6):802-806.
Song Y, Su L, Jing F W, et al. Self - learning algorithm optimization for the rolling force model of hot strips [J].Journal of University of Science and Technology Beijing, 2010,32(6):802-806.
[10]周富强, 曹建国,张杰,等.基于神经网络的冷连轧机轧制力预报模型[J].中南大学学报:自然科学版,2006,37(6):1155-1160.
Zhou F Q, Cao J G, Zhang J, et al.Prediction model of rolling force for tandem cold rolling mill based on neural networks and mathematical models [J].Journal of Central South University: Science and Technology,2006,37(6):1155-1160.
[11]郭立伟, 杨荃,郭磊.冷连轧过程控制轧制力模型综合参数自适应[J].北京科技大学学报,2007,29(4):413-416.
Guo L W, Yang Q, Guo L. Comprehensive parameters self-adapting for a rolling force model of tandem cold rolling process control [J]. Journal of University of Science and Technology Beijing,2007,29(4):413-416.
[12]何飞, 石露露,黎敏,等.基于多模态和加权支持向量机的热轧轧制力智能预报[J].工程科学学报,2015,37(4):517-521.
He F, Shi L L, Li M, et al.Intelligent prediction of rolling forces in hot rolling based on a multi-modal and weighted support vector machine [J].Chinese Journal of Engineering, 2015,37(4):517-521.
[13]曹建国, 张杰,张少军.轧钢设备及自动控制[M].北京:化学工业出版社,2010.
Cao J G, Zhang J, Zhang S J. Rolling Equipment and Automatic Control[M]. Beijing: Chemical Industry Press,2010.
[14]胡贤磊, 王昭东,于解民,等.结合模型自学习的BP神经元网络的轧制力预报[J].东北大学学报:自然科学版,2002,23(11):1089-1092.
Hu X L, Wang Z D, Yu J M, et al. Prediction of rolling load by BP neural networks integrating with self-adaption of traditional model [J]. Journal of Northeastern University:Natural Science,2002,23(11):1089-1092.
[15]朱其萍, 徐红玉,王晓强,等.基于PSO-BP的超声滚挤压轴承套圈表面加工硬化程度预测[J].锻压技术,2021,46(11): 190-196.
Zhu Q P, Xu H Y, Wang X Q, et al. Prediction on degree of work hardening for surface of bearing ring by ultrasonic rolling extrusion based on PSO-BP[J].Forging & Stamping Technology,2021,46 (11): 190-196.
|