网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型“拳头式”锻模“骨头层”材料性能研究与有限元分析
英文标题:Research and finite element analysis on properties of “bone layer” material for new “fist type” forging die
作者:陈沿宏 夏玉峰 廖海龙 张雪 彭梦霞 
单位:重庆大学 
关键词:热锻模 铁基高温合金 多道次热压缩 显微组织 力学性能 
分类号:TG316
出版年,卷(期):页码:2022,47(5):204-210
摘要:

为了适应大型锻件高温重载的工艺环境,设计了一种新型的“拳头”式锻模,该锻模主要由“皮肤层”、“骨头层”和铸钢基体组成。选择铁基高温合金JX03作为“骨头层”,对其多道次热压缩前后的组织成分和力学性能变化规律进行了探究。同时,利用有限元模拟软件DEFORM对铁基高温合金JX03作为“骨头层”时的服役情况进行了分析。采用光学显微镜(OM)、X射线衍射(XRD)、能谱仪(EDS)观察了材料多道次热压缩前后的显微组织变化,采用显微硬度实验观测了其力学性能变化。结果表明:铁基高温合金JX03中较多的索氏体分布为其带来了较好的综合力学性能,主要成分为Cr23C6的合金碳化物形成了弥散强化,而结合面处强化元素含量的降低对结合强度造成了一定的负面影响,但铁基高温合金JX03的显微硬度在热压缩后有了一定提升。有限元分析显示铁基高温合金JX03作为“骨头层”可在凸台与侧壁提供较优的结构支撑,在平台与凹陷处提供足够的应力缓冲。

In order to adapt to the process environment of high temperature and heavy load for large forgings, a new type of “fist type” forging die was designed, which was mainly composed of “skin layer”, “bone layer” and cast steel matrix. Then, taking the iron based superalloy JX03 as the “bone layer”, its microstructure and mechanical properties changes law before and after multi-pass hot compression were studied. At the same time, the service condition of iron based superalloy JX03 as “bone layer” was analyzed by the finite element simulation software DEFORM, the microstructure changes of materials before and after multi-pass hot compression were observed by optical microscope (OM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS), and the mechanical properties changes were observed by microhardness test. The results show that the more sorbite distribution in iron based superalloy JX03 leads to better comprehensive mechanical properties, and the alloy carbides mainly composed of Cr23C6 form dispersion strengthening. However, the decreasing of strengthening element content at the jojnt surface has a negative effect on the bonding strength, but the microhardness of iron based speralloy JX03 is improved after hot compression. Thus, the finite element analysis shows that iron based superalloy JX03 as a “bone layer” can provide better structural support in the boss and side wall and provide enough stress buffer in the platform and depression.

 
基金项目:
国家自然科学基金资助项目(51775068)
作者简介:
作者简介:陈沿宏(1997-),男,硕士研究生,E-mail:cyh1021767795@163.com;通信作者:夏玉峰(1972-),男,博士,教授,E-mail:xyfeng@cqu.edu.cn
参考文献:

[1]何丹琪, 石颢. 钛合金在航空航天领域中的应用探讨[J]. 中国高新技术企业, 2016(27): 50-51.


He D Q, Shi H. Application of titanium alloy in aerospace field[J]. China High-Tech Enterprises,2016,(27): 50-51.


[2]姜启川, 方健儒, 张瑞卿, . 热锻模具精密铸造工艺的研究与应用[J]. 铸造,200251(7): 408-410.


Jiang Q C, Fang J R, Zhang R Q, et al. Study and application of hot work die precision casting process[J].Foundry,2002,51(7): 408-410.


[3]王树奇, 崔向红, 王峰, . 铸造热锻模具钢的研究与应用[J]. 铸造,200655(6): 555-559.


Wang S Q, Cui X H, Wang F, et al. Research and application of precision cast hot-forging die steels[J]. Foundry200655(6): 555-559.


[4]李梦瑶, 周杰, 余盈燕, . 铸钢基体双金属堆焊热锻模温度场及其对硬度的影响[J]. 金属热处理, 201439(6): 136-139.


Li M Y, Zhou J, Yu Y Y, et al. Temperature field and its influence on hardness of cast steel matrix dual metal hot forging die[J]. Heat Treatment of Metals, 2014,39(6): 136-139.


[5]卢顺, 周杰, 李梦瑶. 铸钢基体双金属梯度制备锻模焊层厚度研究[J]. 热加工工艺, 2014,43(13): 95-98.


Lu S, Zhou J,Li M Y. Research on preparation of welding layer thickness of forging die with dual metal gradienton casting-steel matrix[J]. Hot Working Technology,2014,43(13): 95-98.


[6]Lu S, Zhou J, Zhang J S. Optimization of welding thickness on casting-steel surface for production of forging die[J]. The International Journal of Advanced Manufacturing Technology, 201576(5-8)1411-1419.


[7]Zhou Y F, Yang Y L, Jiang Y W, et al. Fe-24wt.%Cr-4.1wt.%C hardfacing alloy: Microstructure and carbide refinement mechanisms with ceria additive[J]. Materials Characterization, 2012 7277-86.


[8]Yang K, Jiang Y F, Bao Y F. Effect of titanium content on microstructure and wear resistance of hardfacing alloy[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2018,33(3): 669-673.


[9]Masaylo D V,Orlov A, Razumov N G, et al. Laser cladding of heat-resistant iron based alloy[J]. Key Engineering Materials, 2019,822: 520-525.


[10]Shen L, Zhou J,Xiong Y B, et al. Analysis of service condition of large hot forging die and refabrication of die by bimetal-layer weld surfacing technology with a cobalt-based superalloy and a ferrous alloy[J]. Journal of Manufacturing Processes, 2018,31:731-743.


[11]上海市机械制造工艺研究所. 金相分析技术[M]. 上海:上海科学技术文献出版社, 1987.


Shanghai Machinery Manufacturing Technology Research Institute. Metallographic Analysis Technology [M]. Shanghai: Shanghai Science and Technology Literature Press, 1987.


[12]Adachi S.The Handbook on Optical Constants of Metals: In Tables and Figures[M]. SingaporeWorld Scientific2012.


[13]杜晓洁, 洪永昌,单军战. 时效对Fe基合金激光重熔层组织和性能的影响[J]. 金属热处理, 2020, 45 (9): 111-116.


Du X J, Hong Y C, Shan J Z. Effect of aging on microstructure and properties of laser remelted layer of Fe-based alloy[J]. Heat Treatment of Metals,2020,45(9):111-116.


[14]Maugis P, Kandaskalov D. Revisiting the pressure effect on carbon migration in iron [J]. Materials Letters,2020,270:127715.


[15]Liu JChen W P. Microstructure, mechanical properties and corrosion behavior of an Fe-10Cr-2.7B-5.5Al-13Mn alloy prepared by spark plasma sintering[J]. Journal of Alloys & Compounds, 2018741: 348-359.


[16]Bonny G, Domain C, Castin N, et al. The impact of alloying elements on the precipitation stability and kinetics in iron based alloys: An atomistic study[J]. Computational Materials Science, 2019, 161: 309-320.


[17]Joshy S, Jayadevan K R, Ramesh A, et al. Microstructural evolution and microhardness response of H11 hot forging dies[J]. World Journal of Engineering, 2019,16(5): 573-581.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9