网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2219铝合金热加工及组织演化
英文标题:Thermal working and microstructure evolution for 2219 aluminum alloy
作者:任东超 邱娟 杨涛 余万华 翟月雯 邓开豪 
单位:北京机电研究所有限公司 北京科技大学 中国航空工业标准件制造有限责任公司 广西工业职业技术学院 
关键词:2219铝合金 热变形 热加工图 微观组织 动态软化机制 
分类号:TG142.1
出版年,卷(期):页码:2022,47(5):211-216
摘要:

利用Gleeble-1500试验机进行变形温度为400~480 ℃、变形速率为0.001~10 s-1的单轴热压缩试验,得到了不同变形条件下的真应力-真应变曲线,建立了不同应变量下的热加工图,研究了挤压态2219铝合金在不同变形条件下的微观组织演变规律。研究表明:在所选择的变形区间内,变形抗力随着变形温度的增加以及变形速率的降低而降低。分析了不同应变量条件下的2219铝合金热加工图,并结合微观组织进行验证,结果吻合良好。最终,确定了2219铝合金最佳热变形区间为:应变速率为0.001~0.368 s-1、变形温度为430~480 ℃,在所确定的可加工区域动态软化机制为动态再结晶,热加工之后晶粒为均匀等轴状。

The uniaxial thermal compression tests were carried out at deformation temperatures from 400 to 480 ℃ and deformation rates from 0.001 to 10 s-1 by testing machine Gleeble-1500, and the true stress-true strain curves under different deformation conditions were obtained. Then, the thermal processing diagrams under different strain amounts were established, and the microstructure evolution laws of the extruded 2219 aluminum alloy under different deformation conditions were studied. The results show that the deformation resistance decreases with the increasing of deformation temperature and the decreasing of deformation rate within the selected deformation interval. The thermal processing diagrams of 2219 aluminum alloy under different strain amounts were analyzed,which was verified by combining with the microstructure, the results are in good agreement. At last, the best thermal deformation interval of 2219 aluminum alloy is determined as the strain rate of 0.001-0.368 s-1 and the deformation temperature of 430-480 ℃. The dynamic softening mechanism in the determined machinable region is dynamic recrystallization, and the grains are uniform equiaxed after thermal processing.

基金项目:
“高档数控机床与基础制造装备”科技重大专项(2018ZX04044001)
作者简介:
作者简介:任东超(1997-),男,硕士研究生,E-mail:rendongchao1997@163.com;通信作者:邓开豪(1967-),男,学士,高级工程师,E-mail:2233578149@qq.com
参考文献:

[1]柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨:哈尔滨工业大学,2017.


Bai J Y. Microstructure Evolution of 2219-Al during GTA Based Additive Manufacturing and Heat Treatment[D].Harbin:Harbin Institute of Technology,2017.


[2]管仁国, 娄花芬,黄晖,等. 铝合金材料发展现状、趋势及展望[J]. 中国工程科学,202022(5)68-75.


Guan R G,Lou H F,Huang H,et al.Development of aluminum alloy materials:current status,trend,and prospects[J].Strategic Study of CAE,2020,22(5):68-75.


[3]丁吉坤, 宋建岭,蒙丹阳,等. 2219厚板铝合金钨极和熔化极惰性气体保护焊焊接接头组织与性能对比[J]. 宇航材料工艺,202050(5)93-97.


Ding J K,Song J L,Meng D Y,et al. Comparison of microstructure and properties of welded joints in tungsten & metal inert gas welding of 2219 thick plate aluminum alloy[J]. Aerospace Materials & Technology,2020,50(5):93-97.


[4]陈镇扬, 彭文飞,牛波凯,等. 超大型环形件用2219铝合金的热变形本构方程及热加工图[J]. 塑性工程学报,202027(4)83-92.


Chen Z Y,Peng W F,Niu B K,et al. Hot deformation constitutive equation and hot processing map of 2219 aluminum alloy for super large rings[J]. Journal of Plasticity Engineering,2020,27(4):83-92.


[5]Yang Y L, Zhan L H, Ma Q Q, et al. Effect of pre-deformation on creep age forming of AA2219 plate:Springback, microstructures and mechanical properties[J]. Journal of Materials Processing Technology,2016,229:697-702.


[6]Tan Y B, Yang L H, Tian C, et al. Processing maps for hot working of 47Zr-45Ti-5Al-3V alloy[J]. Materials Science and Engineering: A, 2014, 597:171-177.


[7]胡亚美, 黄海广,郑必举,等. Ti-4Al-2.5V-1.5Fe合金多道次热变形行为及微观组织演变[J]. 塑性工程学报,202027(9)132-139.


Hu Y M,Huang H G,Zheng B J,et al. Multi-pass hot deformation behavior and microstructure evolution of Ti-4Al-2.5V-1.5Fe alloy[J]. Journal of Plasticity Engineering,2020,27(9):132-139.


[8]Prasad Y V R KGegel H L,Doriavelu S Met al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.


[9]郝建军, 张瑞丰,宋耀辉,等. 2205双相不锈钢的热加工图和组织研究[J].锻压技术,2021,46(7):190-198.


Hao J J,Zhang R F,Song Y H,et al. Study on thermal processing diagram and microstructure for 2205 duplex stainless steel[J]. Forging & Stamping Technology,2021,46(7):190-198.


[10]曾卫东, 周义刚,周军,等. 加工图理论研究进展[J]. 稀有金属材料与工程,200635(5)673-677.


Zeng W D,Zhou Y G,Zhou J,et al. Recent development of processing map theory [J]. Rare Metal Materials and Engineering,200635(5):673-677.


[11]Prasad Y V R K, Rao K P, Sasidhara S. Hot Working Guide: A Compenduium of Processing Maps[M]. 2nd Edition. OH:ASM International, 2015.


[12]Rao K P, Prasad Y V R K, Suresh K. Hot working behavior and processing map of a γ-TiAl alloy synthesized by powder metallurgy[J]. Materials & Design, 2011, 32(10):4874-4881.


[13]李昌民, 谭元标,赵飞. Inconel 718高温合金流变曲线修正及热加工图[J].稀有金属,2020,44(6):585-596.


Li C M,Tan Y B,Zhao F. Modification of flow stress curve and processing maps of Inconel 718 superalloy [J]. Chinese Journal of Rare Metals,2020,44(6):585-596.


[14]Hou G C, Xie J, Yu J J, et al. Room temperature tensile behaviour of K640S Co-based superalloy[J]. Materials Science and Technology, 2019, 35(5):530-535.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9