网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC4钛合金锻件疲劳寿命分析及其仿真模型修正
英文标题:Fatigue life analysis and simulation model modification on TC4 titanium alloy forgings
作者:方秀荣 王自亮 杨锦辉 刘岩 
单位:1.西安科技大学 机械工程学院 2. 中联重科股份有限公司 
关键词:TC4钛合金锻件 疲劳寿命 模型修正 变形温度 变形程度 
分类号:TG319
出版年,卷(期):页码:2022,47(6):1-8
摘要:

 依据物理实验,研究了锻造变形温度和变形程度两个关键参量对TC4钛合金锻件疲劳寿命的影响,利用有限元与物理实验相结合的方法建立并修正了TC4钛合金锻件疲劳寿命仿真模型,并对仿真模型进行了验证。结果表明:相比于原材料,锻造成形的TC4钛合金锻件具有较长的疲劳寿命,并且变形温度控制在α+β相变温度时所得锻件的疲劳寿命最长;在最佳变形温度下,变形程度控制在50%左右时锻件的疲劳寿命最长,考虑锻造变形温度带的影响,应尽可能提高锻锤频次;锻件残余应力是影响仿真模型精度的主要因素,通过验证表明,引入实际锻件的最大等效残余应力可以极大地提高仿真精度,这为深入分析锻造工艺参量对TC4钛合金锻件疲劳寿命的影响奠定了基础。

 Influences of deformation temperature and deformation degree for forging on fatigue life of TC4 titanium alloy forgings were studied by physical experiments. Then, the simulation model of fatigue life for TC4 titanium alloy forgings was established and modified by combining finite element with physical experiment, and the simulation model was verified. The results show that compared with the raw materials, the forged TC4 titanium alloy forgings have longer fatigue life, and the forgings obtained by controlling the deformation temperature at α+β phase deformation temperature have the longest fatigue life. At the optimum deformation temperature, when the deformation degree is controlled at about 50%, the fatigue life of forgings is the longest. Considering the influence of forging deformation temperature zone, the forging frequency should be increased as high as possible. Furthermore, the residual stress of forgings is the main factor affecting the accuracy of the simulation model, and the verification shows that the simulation accuracy can be greatly improved if the maximum equivalent residual stress of actual forgings is engaged, which lays the foundation for in\|depth analysis on the influence of forging process parameters on the fatigue life of TC4 titanium alloy forgings.

基金项目:
国家自然科学基金面上项目(51775427,52175145)
作者简介:
方秀荣(1971-),女,博士,教授 Email:fangxr098@163.com
参考文献:

 [1]刘世锋, 宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,202040(3): 77-94.


 


Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.


 


[2]杨晶, 任晓龙,王涛,等. 海洋工程用超大规格Ti80钛合金锻坯制备研究[J]. 锻压技术,202146(2): 19-22.


 


Yang JRen X LWang Tet al. Research on preparation of oversized forging billet for Ti80 titanium alloy in ocean engineering [J]. Forging & Stamping Technology2021,46(2):19-22.


 


[3]李鸿江, 于洋, 宋晓云, . 新型Ti6554钛合金热变形行为及热加工图[J]. 稀有金属,202044(5): 462-468.


 


Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti6554 alloy[J]. Chinese Journal of Rare Metals, 2020,44(5):462-468.


 


[4]程巨强, 史超. 钛合金的组织、性能及加工技术研究进展[J]. 热加工工艺,201645(2): 5-813.


 


Cheng J Q, Shi C. Study progress of microstructure, properties and processing technology of titanium alloys[J]. Hot Working Technology, 2016, 45(2): 5-8,13.


[5]蒋泽, 许希武,郭树祥,等. 基于材料细观特性的TC4钛合金疲劳裂纹萌生寿命仿真[J]. 机械强度,202143(2): 425-433.


 


Jiang Z, Xu X W, Guo S X, et al. Simulation of fatigue crack initiation life of TC4 titanium alloy based on its mesoscopic properties[J]. Journal of Mechanical Strength, 2021, 43(2): 425-433.


 


[6]Dong X D, Liu D XSun Y F,et al. The effects of machined workpiece surface integrity on the fatigue life of TC21 titanium alloy[J]. Advanced Materials Research, 2012, 1766: 382-389.


 


[7]樊荣, 李秀红,李文辉,等. 基于ABAQUS/FESAFETC4钛合金板材疲劳寿命仿真与实验[J]. 表面技术,201746(1): 158-163.


 


Fan R, Li X H, Li W H, et al. Fatigue life simulation and experiment of TC4 titanium alloy board based on ABAQUS/FESAFE[J]. Surface Technology, 2017, 46(1): 158-163.


 


[8]周晓虎, 刘卫,郝芳,等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术,202045(6): 29-35.


 


Zhou X HLiu WHao Fet al. Influence of quasiβ forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology, 2020, 45(6):29-35.


 


[9]Wu G Q, Shi C L Sha Wet al. Effect of microstructure on the fatigue properties of Ti6Al4V titanium alloys[J]. Materials and Design, 2012, 46(2): 668-674.


 


[10]Zhang M QHan F B, Tang B, et al. Effects of microstructure on high cycle fatigue properties of dualphase Ti alloy: Combined nonlocal CPFE simulations and extreme value statistics[J]. Journal of Materials Research and Technology, 2020, 9(3): 5991-6000.


 


[11]宋松. 基于连续损伤力学的Ti6Al4V钛合金高低周复合疲劳损伤研究[D]. 天津:天津大学,2018.


 


Song S. The Research of Combined High and Low Cycle Fatigue Damage of Ti6Al4V Titanium Alloy Based on the Continuum Damage Mechanics[D]. TianjinTianjin University, 2018.


 


[12]周渝庆, 张祥. 机械紧固件用新型钛合金的锻造温度优化 [J]. 锻压技术,202045(1): 35-40.


 


Zhou Y QZhang X. Optimization on forging temperature of new titanium alloy for mechanical fasteners [J]. Forging & Stamping Technology2020,45(1):35-40.


 


[13]孙世仁, 刘虹,陈文琳,等. 基于有限元软件的锻造工艺参数对牵引拉杆成形的影响分析[J]. 热加工工艺,202049(15): 68-72.


 


Sun S R, Liu H, Chen W L, et al. Influence of forging process parameters on forming of traction rod based on finite element software[J]. Hot Working Technology, 2020, 49(15): 68-72.


 


[14]Yu W X, Li M Q, Luo J. Effect of processing parameters on microstructure and mechanical properties in high temperature deformation of Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2009, 38(1): 19-24.


 


[15]刘伟东, 屈华. TC4合金(α+β)/β转变温度的金相法测定与理论计算[J]. 特种铸造及有色合金,201434(11): 1210-1213.



 


Liu W D, Qu H. Metallographic measurement and theoretical calculation of (α+β)/β transformation temperature of TC4 alloy[J]. Special Casting and Nonferrous Alloys, 2014, 34(11): 1210-1213.


 


[16]GB/T 30752021, 金属材料—疲劳试验—轴向力控制方法[S].


 


GB/T 30752021, Metallic materialsFatigue testingAxial forcecontrolled method[S].


 


[17]Dong S, Liu X D, Shan Y C, et al. Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel[J]. International Journal of Fatigue, 2016, 93:173-183.


 


[18]方秀荣, 邵艳茹,陆佳,等. 锻造工艺参数对TC4钛合金锻件残余应力的影响[J]. 锻压技术,202146(3): 1-8.


 


 


 


 


服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9