[1]刘世锋, 宋玺,薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报,2020,40(3): 77-94.
Liu S F, Song X, Xue T, et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94.
[2]杨晶, 任晓龙,王涛,等. 海洋工程用超大规格Ti80钛合金锻坯制备研究[J]. 锻压技术,2021,46(2): 19-22.
Yang J,Ren X L,Wang T,et al. Research on preparation of oversized forging billet for Ti80 titanium alloy in ocean engineering [J]. Forging & Stamping Technology,2021,46(2):19-22.
[3]李鸿江, 于洋, 宋晓云, 等. 新型Ti6554钛合金热变形行为及热加工图[J]. 稀有金属,2020,44(5): 462-468.
Li H J, Yu Y, Song X Y, et al. Thermal deformation behavior and processing map of a new type of Ti6554 alloy[J]. Chinese Journal of Rare Metals, 2020,44(5):462-468.
[4]程巨强, 史超. 钛合金的组织、性能及加工技术研究进展[J]. 热加工工艺,2016,45(2): 5-8,13.
Cheng J Q, Shi C. Study progress of microstructure, properties and processing technology of titanium alloys[J]. Hot Working Technology, 2016, 45(2): 5-8,13.
[5]蒋泽, 许希武,郭树祥,等. 基于材料细观特性的TC4钛合金疲劳裂纹萌生寿命仿真[J]. 机械强度,2021,43(2): 425-433.
Jiang Z, Xu X W, Guo S X, et al. Simulation of fatigue crack initiation life of TC4 titanium alloy based on its mesoscopic properties[J]. Journal of Mechanical Strength, 2021, 43(2): 425-433.
[6]Dong X D, Liu D X,Sun Y F,et al. The effects of machined workpiece surface integrity on the fatigue life of TC21 titanium alloy[J]. Advanced Materials Research, 2012, 1766: 382-389.
[7]樊荣, 李秀红,李文辉,等. 基于ABAQUS/FESAFE的TC4钛合金板材疲劳寿命仿真与实验[J]. 表面技术,2017,46(1): 158-163.
Fan R, Li X H, Li W H, et al. Fatigue life simulation and experiment of TC4 titanium alloy board based on ABAQUS/FESAFE[J]. Surface Technology, 2017, 46(1): 158-163.
[8]周晓虎, 刘卫,郝芳,等. 准β锻造工艺对TC21钛合金大型锻件组织及性能的影响[J]. 锻压技术,2020,45(6): 29-35.
Zhou X H,Liu W,Hao F,et al. Influence of quasiβ forging process on microstructure and properties of TC21 titanium alloy large forgings [J]. Forging & Stamping Technology, 2020, 45(6):29-35.
[9]Wu G Q, Shi C L, Sha W,et al. Effect of microstructure on the fatigue properties of Ti6Al4V titanium alloys[J]. Materials and Design, 2012, 46(2): 668-674.
[10]Zhang M Q,Han F B, Tang B, et al. Effects of microstructure on high cycle fatigue properties of dualphase Ti alloy: Combined nonlocal CPFE simulations and extreme value statistics[J]. Journal of Materials Research and Technology, 2020, 9(3): 5991-6000.
[11]宋松. 基于连续损伤力学的Ti6Al4V钛合金高低周复合疲劳损伤研究[D]. 天津:天津大学,2018.
Song S. The Research of Combined High and Low Cycle Fatigue Damage of Ti6Al4V Titanium Alloy Based on the Continuum Damage Mechanics[D]. Tianjin:Tianjin University, 2018.
[12]周渝庆, 张祥. 机械紧固件用新型钛合金的锻造温度优化 [J]. 锻压技术,2020,45(1): 35-40.
Zhou Y Q,Zhang X. Optimization on forging temperature of new titanium alloy for mechanical fasteners [J]. Forging & Stamping Technology,2020,45(1):35-40.
[13]孙世仁, 刘虹,陈文琳,等. 基于有限元软件的锻造工艺参数对牵引拉杆成形的影响分析[J]. 热加工工艺,2020,49(15): 68-72.
Sun S R, Liu H, Chen W L, et al. Influence of forging process parameters on forming of traction rod based on finite element software[J]. Hot Working Technology, 2020, 49(15): 68-72.
[14]Yu W X, Li M Q, Luo J. Effect of processing parameters on microstructure and mechanical properties in high temperature deformation of Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2009, 38(1): 19-24.
[15]刘伟东, 屈华. TC4合金(α+β)/β转变温度的金相法测定与理论计算[J]. 特种铸造及有色合金,2014,34(11): 1210-1213.
Liu W D, Qu H. Metallographic measurement and theoretical calculation of (α+β)/β transformation temperature of TC4 alloy[J]. Special Casting and Nonferrous Alloys, 2014, 34(11): 1210-1213.
[16]GB/T 3075—2021, 金属材料—疲劳试验—轴向力控制方法[S].
GB/T 3075—2021, Metallic materials—Fatigue testing—Axial forcecontrolled method[S].
[17]Dong S, Liu X D, Shan Y C, et al. Research on the stamping residual stress of steel wheel disc and its effect on the fatigue life of wheel[J]. International Journal of Fatigue, 2016, 93:173-183.
[18]方秀荣, 邵艳茹,陆佳,等. 锻造工艺参数对TC4钛合金锻件残余应力的影响[J]. 锻压技术,2021,46(3): 1-8.
|