网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Deform 3D的风机主轴空心轴预制坯成形优化
英文标题:Forming optimization on hollow shaft preform of wind turbine spindle based on Deform 3D
作者:赵顺治 景财年 林涛 刘磊 张志浩 
单位:山东建筑大学 材料科学与工程学院 
关键词:风机主轴空心轴 模锻成形 预测坯 42CrMo4钢 模具 
分类号:TG316
出版年,卷(期):页码:2022,47(6):47-54
摘要:

 基于有限元分析软件Deform3D建立了42CrMo4钢风机主轴110等比例缩小的热力耦合三维有限元模型。为了对风机主轴空心轴预制坯进行成形优化,设计了一套专用于风机主轴空心轴预制坯锻造的新型模具。在Deform3D中将常规风机主轴坯料模锻成形过程与采用新型模具的风机主轴空心轴预制坯成形过程进行等条件对比研究,分别从法兰端成形效果、轴身下料量以及等效应变、金属流动速度场、主轴所需成形力等的变化规律方面进行参数对比研究,验证了采用新型模具成形风机主轴空心轴预制坯的可行性,为优化风机主轴空心轴的实际生产流程提供了一定的参考。

 

 Based on finite element analysis software Deform\|3D, a three\|dimensional thermal\|mechanical coupling finite element model of 42CrMo4 steel wind turbine spindle with equal scale reduction of 1∶10 was established, and a set of new mold for hollow shaft preform forging of wind turbine spindle was designed in order to optimize the forming of hollow shaft preform for wind turbine spindle. Then, in Deform\|3D, the conventional forging process of wind turbine spindle blank was compared with the forming process of hollow shaft preform for wind turbine spindle using the new mold under the same conditions, and the parameters were compared and studied from the aspects of flange end forming effect, cutting amount of shaft body and changing laws of equivalent strain, metal flow velocity field, forming force required by spindle etc., and the feasibility of using the new mold to form hollow shaft preform for wind turbine spindle was verified, which provided a certain reference for optimizing the actual production process of hollow shaft for wind turbine spindle.

基金项目:
济南市“高校20条”资助项目(2018GXRC025)
作者简介:
赵顺治(1997-),男,硕士研究生 Email:1753783278@qq.com 通信作者:景财年(1973-),男,博士,教授 Email:jcn@sdjzu.edu.cn
参考文献:

 [1]白儒, 徐苾璇,李钢强,.兆瓦级风力发电机组主轴优化设计[J].现代制造工程,2020(3):136-141.


 


Bai RXu B XLi G Qet al. Research about structure optimization on main shaft of MW wind turbine[J].Modern Manufacture Engineering2020,(3):136-141.


 


[2]陈文全, 时乐智,廉荣光,.法兰轴的自由锻造工艺[J].大型铸锻件,2019(5):17-19.


 


Chen W Q, Shi L Z, Lian R G, et al. Free forging process of flange shaft[J].Heavy Casting and Forging,2019(5):17-19.


 


[3]陈文全, 毕京华,王素娟,.大型风电主轴空心锻造内孔变形问题解决方案[J].大型铸锻件,2019(3):11-12.


 


Chen W Q, Bi J H, Wang S J,et al.Solution for inner hole deformation issue of heavy wind power main shaft in hollow forging[J].Heavy Casting and Forging,2019(3):11-12.


 


[4]阮树荣, 吴永强,王开坤.方锭改锻圆锭过程中心开裂的数值模拟分析[J].热加工工艺,2021,50(11):104-108.


 


Ruan S R, Wu Y Q, Wang K K.Numerical simulation analysis on cracking of center in process of cuboid ingot forging into round ingot[J].Hot Working Technology,2021,50(11):104-108.


 


[5]鲁玉梅, 王凯军,梁晓婕,.42CrMo4风机主轴调质工艺优化[J].热处理技术与装备,2020,41(5):29-32.


 


Lu Y M, Wang K J, Liang X J,et al. Optimization of quenching and tempering process for 42CrMo4 fan spindle[J].Heat Treatment Technology and Equipment,2020,41(5):29-32.


 


[6]GB/T 52162014,保证淬透性结构钢[S].


 


GB/T 52162014Structural steels subject to endquench hardenability requirements[S].


 


[7]高士友, 张永忠,石力开,.激光快速成型TC4钛合金的力学性能[J].稀有金属,200428(1):29-33.


 


Gao S Y, Zhang Y Z, Shi L Ket al. Mechanical properties of TC4 alloy fabricated by laser direct deposition[J].Chinese Journal of Rare Metals,200428(1):29-33.


 


[8]Jonkman J.New modularization framework for the FAST wind turbine CAE tool: Preprint[A].51st AIAA Aerospace Sciences Meeting[C].US:AIAA,2013.


 


[9]Damiani R R,Song H,Robertson A N, et al. Assessing the Importance of nonlinearities in the development of a substructure model for the wind turbine CAE tool FAST[A]. ASME International Conference on Ocean[C].Namtes, 2013.


 


[10]张彦娟. 风机主轴旋转锻造工艺及参数研究[D].秦皇岛:燕山大学,2011.


 


Zhang Y J.Study on Main Shaft Rotation Forging Process and Its Process Parameters [D]. QianghuangdaoYanshan University,2011.


 


[11]杨萍. 风力发电机主轴锻件的化学成份设计及热处理工艺研究[D].重庆:重庆大学,2008.


 


Yang P. Design Chemical Composition and Study on Heat Treatment Method of the Main Shaft of Wind Power Generator[D].ChongqingChongqing University,2008.


 


[12]江燮鑫. 风机主轴毛坯组合锻造法[J].新技术新工艺,2010(2):87-88.


 


Jiang X X.Combination forging method for the fan spindle blank[J].New Technology & New Process,2010(2):87-88.


 


[13]Mosavi A. CAE automatic multiobjective optimization based design: Application to wind turbine nacelle design[A]. ANSYS Conference and 27th CADFEM Users Meeting[C]. Leipzig, 2009.


 


[14]史可庆, 蔺立元,赵刚,.42CrMo4钢锭镦粗裂纹的原因分析[J].热加工工艺,2020,49(3):154-156.


 


Shi K Q, Lin L Y, Zhao G,et al.Cause analysis of crack in 42crmo4 steel ingot during upsetting[J].Hot Working Technology,2020,49(3):154-156.


 


[15]Kim Y H, Park H G, Kim D H, et al. Structural and vibration analyses of 3MW class windturbine blade using CAE technique[J]. The KSFM Journal of Fluid Machinery, 2008, 11(4):22-31.


 


[16]Zhang Z, Yin Z, Han T, et al. Fracture analysis of wind turbine main shaft[J]. Engineering Failure Analysis, 2013, 34(6):129-139.


 


[17]单陇红, 王凌浩,刘顺彭,.42CrMo4钢高温拉伸断裂准则与机理的研究[J].热加工工艺,2021,50(4):59-6267.


 


Shan L H, Wang L H, Liu S P,et al.Study on tensile fracture criterion and mechanism of 42crmo4 steel at high temperature[J].Hot Working Technology,2021,50(4):59-6267.


 


[18]Sonne M R, Thorborg J, Hattel J H. Modelling the effect of coating on the stresses and microstructure evolution in chill casting of wind turbine main shafts[J]. Wind Energy, 2017, 20(9): 1635-1643.


 


[19]商雪坤, 肖会芳, 王西涛. 化学机械合金化方法制备CuNb系氧化物强化合金[J].稀有金属,2020,44(2):122-126.


 


Shang X K, Xiao H F, Wang X T. Mechanochemical synthesis of oxide dispersionstrengthened CuNb alloy[J]. Chinese Journal of Rare Metals, 2020,44(2):122-126.


 


[20]Rebsdorf A V.Wind turbine and a shaft for a wind turbine[P]. US:13164926,2011-12-22.


 


[21]许礼刚, 关景文, 徐美娟. 基于鲁棒优化理论的离子型稀土逆向物流网络模型构建[J].稀有金属,2020,44(6):647-657.


 


Xu L G, Guan J W, Xu M J. Ionic rare earth reverse logistics network model based on robust optimization theory[J]. Chinese Journal of Rare Metals, 2020,44(6):647-657.


 


[22]严伟鑫. 风电传动链非扭矩载荷技术研究[D].杭州:浙江大学,2012.


 


Yan W X. Research on the Technology of Nontorque Loading System for Wing Turbine Drivetrain[D].HangzhouZhejiang University,2012.


 


[23]曾纯亮. 风电机组主轴系统结构分析建模研究及其应用[D].重庆:重庆大学,2011.


 


Zeng C L.Structural Modeling Analysis and Applications on Wind Turbine Main Shaft[D].ChongqingChongqing University,2011.


 


[24]陈德平, 许健,杨刚,.不同浇注方式下铸造风机主轴的热裂模拟及工艺优化[J].热加工工艺,2011,40(7):54-5662.


 


Chen D P, Xu J, Yang G,et al.Simulation of hot tearing of fan main shaft casting under different pouring methods and its process optimizatio[J].Hot Working Technology,2011,40(7):54-5662.


 


[25]Chen J,Jie C,Gong C. On optimizing the aerodynamic load acting on the turbine shaft of PMSGbased directdrive wind energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8):4022-4031.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9