网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轮毂锻造机器人欠秩端拾器热-结构耦合分析及优化
英文标题:Thermal-structural coupling analysis and optimization on under-rank end picker for hub forging robot
作者:申燚1 张全兵1 邱贝贝2 张彬2 袁明新1 
单位:1.江苏科技大学 机电与动力工程学院 2.连云港杰瑞自动化有限公司 
关键词:轮毂锻造 欠秩端拾器 热-结构耦合 隔热优化 拓扑优化 
分类号:TP242
出版年,卷(期):页码:2022,47(6):169-178
摘要:

 为了提高高温环境下轮毂锻造机器人欠秩端拾器夹持的有效性和承载性,对欠秩端拾器进行了热-结构耦合分析及结构优化。首先,基于有限元理论将欠秩端拾器所受热力载荷和静力载荷耦合,得到欠秩端拾器关键部件在耦合力场作用下的热应力分布及应力和应变结果;然后,根据所得热应力分布云图,对欠秩端拾器各指节进行隔热优化设计以及热-结构耦合分析;最后,根据隔热结构的等效应力结果进行了欠秩端拾器的拓扑结构优化。数值分析表明:相比优化前的结构,隔热优化后欠秩端拾器的首、中和末指节在参照节点处的温度分别降低了33.78%50.42%35.31%;拓扑优化后欠秩端拾器的首、中和末指节的质量分别减少了38.75%18.63%26.45%,实现了轮毂锻造机器人欠秩端拾器的耐高温及轻量化的优化目标。

 In order to improve the effectiveness and load-bearing capacity of clamping for under-rank end picker of hub forging robot in high temperature environment, the thermal-structural coupling analysis and structural optimization of under-rank end picker were carried out. First, the thermal load and static load of under-rank end picker were coupled based on finite element theory, the thermal stress distribution and the stress and strain results of the key components for under-rank end picker under coupling force field were obtained. Then, according to the obtaimed thermal stress distribution nephogram, the thermal insulation optimization design and the thermal-structure coupling analysis of each finger joint for under-rank end picker were conducted. Finally, according to the equivalent stress results for thermal insulation structure, the topology structure optimization of under-rank end picker was conducted. The numerical analysis shows that compared with the structure before optimization, the temperatures at reference nodes of the first, middle and last knuckles for under-rank end picker after thermal insulation optimization are reduced by 33.78%, 50.42% and 35.31%, respectively, and the masses of the first, middle and last knuckles for under-rank end picker after topology optimization are reduced by 38.75%, 18.63% and 26.45%, respectively, which achieve the optimization objectives of high temperature resistance and lightweight for under-rank end picker of hub forging robot.

基金项目:
国家重点研发计划“智能机器人”重点专项(2018 YFB1309100);江苏省科技成果转化专项资金项目(BA2019092)
作者简介:
申燚(1976-),女,硕士,副教授 E-mail:shenyi76@163.com 通信作者:张全兵(1994-),男,硕士研究生 E-mail:zqbjust@qq.com
参考文献:

 [1]刘仁明. 链轨节自动化锻造生产线平移夹爪的研制[J].煤矿机械,2020,41(4):41-43.


 


Liu R M. Development of translation clamping claw for chain link automatic forging production line[J].Coal Mine Machinery, 2020,41(4):41-43.


 


[2]Liu J F, Zhang P. Thermomechanical behavior analysis of motorized spindle based on a coupled model [J]. Mechancial Engineering, 2018, 10(1): 1-12.


 


[3]Subbarao R, Gupta S V. Thermal and structural analyses of an internal combustion engine piston with suitable different super alloys[J]. Materials Today: Proceedings, 2020, 22(4): 2950-2956.


 


[4]Kim Y, Sun J K. Design and thermostructural analysis of 2D exhaust nozzle with multiple composite layers[J]. Composite Structures,2020,254(15):252-263.


 


[5]吴卫东, 李杰,杨志新,. 采煤机截割部摇臂结构热固耦合及传动影响分析[J]. 煤矿机械, 2020,41(12): 73-74.


 


Wu W D, Li J, Yang Z X, et al. Analysis of thermomechanical coupling and transmission influence of rocker arm structure of shearer cytting part[J]. Coal Mine Machinery, 2020, 41(12): 73-74.


 


[6]李若愚, 王天宏. 薄板热力耦合的屈曲分析[J].应用数学和力学,2020,41(8):877-886.


 


Li R Y, Wang T H. Thermomechanical buckling analysis of thin plates[J]. Applied Mathematics and Mechanics, 2020,41(8):877-886.


 


[7]Kambampati S, Gray J S, Kim H A. Level set topology optimization of structures under stress and temperature constraints[J]. Computers & Structures, 2020,235(15):365-376.


 


[8]邓小雷, 盛泽枫, 张江林,. 基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法[J]. 浙江大学学报:工学版, 2020,54(1):23-32.


 


Deng X L, Sheng Z F, Zhang J L, et al. Thermal topology optimization design method of spindle under temperaturestructure field coupling condition based on irregular cell[J]. Journal of Zhejiang University: Engineering Science, 2020, 54(1): 23-32.


 


[9]姚红红, 邹德宁,周雨晴,. 固溶温度对06Cr25Ni2奥氏体耐热钢微观组织和力学性能的影响[J].上海金属, 2017, 39(6):22-25.


 


Yao H H, Zou D N, Zhou Y Q, et al. Effect of solution temperature on microstructure and mechanical properties of 06Cr25Ni20 austenitic heatresistant steel[J] Shanghai Metals, 2017, 39(6):22-25.


 


[10]苟建平, 侯力,吴阳,.基于有限元法的变双曲圆弧齿线齿轮啮合刚度分析[J].机械传动,2020,44(10):104-110.


 


Gou J P, Hou L, Wu Y, et al. Analysis of meshing stiffness of variable hyperbolic arc gear based on finite element method[J]. Journal of Mechanical Transmission, 2020, 44(10): 104-110.


 


[11]徐德衍. 铁道车辆热铆连接的有限元分析[J]. 锻压技术,2020,45(2):118-128.


 


Xu D Y. Finite element analysis on hot riveting connection for railway vehicles [J]. Forging & Stamping Technology, 2020,45(2): 118-128.


 


[12]兰青, 刘俊. 轮毂锻造液压机垫板隔热保温结构优化[J]. 机械设计, 2020, 37(S1): 223-225.


 


Lan Q, Liu J. Heat insulation structure optimization of the pad of wheel hub forging hydraulic press[J]. Journal of Machine Design, 2020, 37(S1): 223-225.


 


[13]张同钢, 王优强,徐彩红,等.水润滑动静压陶瓷轴承的热弹流润滑分析[J].机械传动,2017,41(10):17-22.


 


Zhang T GWang Y Q Xu C H, et al. Analysis of the thermal elastohydrodynamic lubrication of waterlubricated hybrid ceramic bearing[J].Journal of Mechanical Transmission, 2017,41(10):17-22.


 


[14]侯庚, 张迎辉, 葛宰林,.大型矿用电铲推压减速器箱体拓扑优化及影响分析[J].机械传动,2018, 42(4):67-70.


 


Hou G, Zhang Y H, Ge Z L, et al. Topology optimization and impact analysis of crowd reducer box of large mining electric excavator[J].Journal of Mechanical Transmission201842(4):67-70.


 


[15]殷剑, 黎诚,金康,. 铝合金汽车前下摆臂成形工艺的有限元模拟与优化[J]. 锻压技术,2021,46(11):74-82.


 


Yin JLi CJin Ket al. Finite element simulation and optimization on forming process of automobile front lower sway arm for aluminum alloy[J]. Forging & Stamping Technology2021,46(11):74-82.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9