[1]Cui H Y, Tian N, Li R C, et al. A method of parametric design of automobile synchronizer ring based on UG secondary development tools [J]. Applied Mechanics and Materials, 2015, 716-717: 635-638.
[2]Zhang M, Hua L, Song Y L, et al. Effects of parameters on fine blanking of steel synchronizer ring teeth [J]. Advanced Materials Research, 2014, 941-944: 1671-1677.
[3]马斌, 梁强,李平. 参考条件对M-JC和M-ZA模型预测精度的影响[J]. 锻压技术,2021,46(5):253-260.
Ma B, Liang Q, Li P. Influence of reference condition on prediction precise for modified Johnson-Cook and modified Zerilli-Armstrong models [J]. Forging & Stamping Technology, 2021, 46(5): 253-260.
[4]梁强, 刘静. 基于灰色系统理论的同步器齿环的成形工艺研究[J]. 特种铸造及有色合金,2019,39(5):483-486.
Liang Q, Liu J. Forming process of hot precision forging for synchronizer ring based on grey system theory [J]. Special Casting & Nonferrous Alloys, 2019, 39(5): 483-486.
[5]王梦寒, 邵长伟,徐志敏,等. 同步器齿环模锻金属流动规律分析及工艺改进[J]. 热加工工艺,2010,39(13):19-22.
Wang M H, Shao C W, Xu Z M, et al. Analysis of metal flow and technology improvement on synchronizer ring precision die-forging [J]. Hot Working Technology, 2010, 39(13): 19-22.
[6]邵长伟, 周杰,王梦寒,等. 基于有限元法的精密锻造齿环齿顶折叠的研究[J]. 热加工工艺,2010,39(11):97-99,102.
Shao C W, Zhou J, Wang M H, et al. Analysis on folding of gear top in synchronizer ring precision forging based on FEM [J]. Hot Working Technology, 2010, 39(11): 97-99,102.
[7]马斌, 李平,梁强. HNi55-7-4-2合金高温本构模型构建及应用[J]. 兵器材料科学与工程,2020,43(4):108-113.
Ma B, Li P, Liang Q. Construction and application of high-temperature constitutive model of HNi55-7-4-2 alloy [J]. Ordnance Material Science and Engineering, 2020, 43(4): 108-113.
[8]马斌, 李平,梁强,等. 同步器齿环用HNi55-7-4-2合金高温本构模型构建及应用[J]. 材料热处理学报,2020,41(12):146-155.
Ma B, Li P, Liang Q, et al. Construction and application of high-temperature constitutive model of HNi55-7-4-2 alloy for synchronizer gear ring [J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 146-155.
[9]Xue S, Zhou J. A research on steel synchronizer gear ring′s precision forging [J]. Materials Science Forum, 2008, 575-578:226-230.
[10]梁强, 张贤明,贾艳艳. 基于灰色关联分析的直齿轮冷挤压成形工艺参数优化[J]. 塑性工程学报,2021,28(1):69-76.
Liang Q, Zhang X M, Jia Y Y. Parameter optimization in cold extrusion process for spur gear based on grey relational analysis [J]. Journal of Plasticity Engineering, 2021, 28(1): 69-76.
[11]危康. 基于SVM-IMPSO模型的薄壁齿环零件热锻成形工艺稳健优化设计[D]. 重庆:重庆大学,2017.
Wei K. Rubust Optimization of Hot Forging Process of Thin-walled Gear Ring Based on SVM-IMPSO Model [D]. Chongqing: Chongqing University, 2017.
[12]刘左发, 冯文杰,陈莹莹. 离合器外齿毂冷挤压成形工艺参数多目标优化[J]. 塑性工程学报,2020,27(4):13-20.
Liu Z F, Feng W J, Chen Y Y. Multi-objective optimization of cold extrusion forming process parameters for clutch outer gear hub [J]. Journal of Plasticity Engineering, 2020, 27(4): 13-20.
[13]郭乐乐, 陈学文,周旭东,等. 基于原位观测的Cr5合金钢Hansel-Spittel高温本构模型修正方法及试验验证[J]. 塑性工程学报,2021,28(6):88-95.
Guo L L, Chen X W, Zhou X D, et al. Correction method and experimental verification of Hansel-Spittel constitutive model of Cr5 alloy steel at high temperature based on in-situ observation [J]. Journal of Plasticity Engineering, 2021, 28(6): 88-95.
[14]尹小燕, 骆静,朱杰. 基于Hansel-Spittel模型的齿环用HAl61- 4-3-1合金本构模型构建[J]. 重庆理工大学学报:自然科学,2021,35(1):111-117,167.
Yin X Y, Luo J, Zhu J. Construction of high-temperature constitutive model of HAl61-4-3-1 alloy for synchronizer ring based on Hansel-Spittel mode [J]. Journal of Chongqing Institute of Technology: Natural Science, 2021, 35(1): 111-117, 167.
[15]李露, 周旭东,陈学文,等. PCrNi3MoV钢Hansel-Spittel流变应力模型[J]. 河南科技大学学报:自然科学版,2020,41(6):1-5,10,115.
Li L, Zhou X D, Chen X W, et al. Hansel-Spittel flow stress model of PCrNi3MoV steel [J]. Journal of Henan University of Science & Technology: Natural Science, 2020, 41(6): 1-5, 10, 115.
|