网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
层状金属界面空洞的形成与演化
英文标题:Formation and evolution of interface voids in laminated metal
作者:刘鑫 帅美荣 谢广明 李海斌 李亮 
单位:太原科技大学 东北大学 
关键词:层状金属 轧制 微张力 微观形貌 空洞 
分类号:TG331
出版年,卷(期):页码:2022,47(7):162-166
摘要:

 异种金属在复合变形过程中由于金属特性差异以及塑性变形不同步,在界面处极易产生空洞缺陷,而空洞的形成和演化对于双金属间界面结合有着极为不利的影响。采用有限元仿真技术模拟了不同张力系数下不锈钢/碳钢复合钢筋变形过程中空洞的发展演变规律。结果表明:在4道次三辊“切线”孔型中,位于辊缝区域的金属为自由变形;在变形初期覆层金属产生翘曲,此时芯部金属的宽展较小,逐步形成界面空隙及空洞;微张力轧制促使空洞在第2道次中进一步扩大, 然而微张力能够改善覆层金属的壁厚均匀度;在第3、4道次精整孔型中,空洞逐渐收缩消失,顺利完成轧制。复合界面的显微形貌表明,随着轧制温度的升高,界面氧化物分解,界面层空洞逐渐消失;当轧制温度高达1200 ℃时,界面深度差仅为3 μm,复合效果较好。

 In the process of composite deformation for dissimilar metals, due to the different in metal properties and the asynchronous plastic deformation, it is easy to produce the void defects at the interface area, and the formation and evolution of void defects have an extremely adverse effect on the bimetallic interfacial bonding. Therefore, the development and evolution laws of voids in the deformation process for stainless steel/carbon steel composite rib under different tension coefficients were simulated by the finite element simulation technology. The results show that in the four passes with three-roll “tangent” feature, the metal in the roll gap area is in free deformation, and the cladding metal warps at the initial stage of deformation. At this time, the core metal has a small width, and the voids and voids are gradually formed at the interface. Moreover, the micro-tension rolling promotes the voids to expand further in the second pass, and the micro-tension improves the uniformity of wall thickness for the cladding metal. In the third and fourth passes of finishing, the voids gradually shrink and disappear, and the rolling process is successfully completed. The micro-morphologies of composite interface show that with the increasing of rolling temperature, the interface oxides are gradually decomposed, and the voids in the interface layer disappear. When the rolling temperature reaches 1200 ℃, the interface depth difference is only 3 μm, and the composite effect is better. 

基金项目:
国家自然科学基金资助项目(52075357);山西省重点研发计划(201903D121043);轧制技术及连轧自动化国家重点实验室(东北大学)开放课题(2020RALKFKT013);山西省研究生教育改革研究课题(2020YJJG241);山西省研究生教育创新项目(2021Y709)
作者简介:
作者简介:刘鑫(1995-),男,硕士研究生 E-mail:1176743646@qq.com 通信作者:帅美荣(1978-),女,博士,教授 E-mail:ruoxin2001@163.com
参考文献:

 [1]张婷, 许浩, 李仲杰, 等. 层状金属复合材料的发展历程及现状[J]. 工程科学学报, 2021,43(1):67-75.


Zhang T, Xu H, Li Z J, et al. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1):67-75.

[2]吴伟, 蔡庆伍, 余伟, 等. 耐腐蚀复合钢筋的生产工艺和技术[J]. 轧钢, 2015,32(Z1):135-138.

Wu W, Cai Q W, Yu W, et al. Production processes and technologies of corrosion resisitant composite bar[J]. Steel Rolling, 2015, 32(Z1):135-138.

[3]刘宝玺,林曾孟,殷福星.多级结构的金属材料强韧化机理研究进展[J]. 精密成形工程, 2021, 13(3): 49-61.

Liu B X, Lin Z M, Yin F X. Research on the strengthening and toughening mechanism of metallic materials with multiscale hierarchical structure[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 49-61.

[4]Xie X, Yin S, Raoelison R, et al. Al matrix composites fabricated by solid-state cold spray deposition: A critical review[J]. Journal of Materials Science & Technology, 2021, 86:20-55.

[5]班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021,38(6):1-23.

Ban H Y, Mei Y X, Shi Y J, Research advances of stainless-clad bimetallic steel structures[J]. Engineering Mechanics, 2021, 38(6):1-23.

[6]Dhib Z, Guermazi N, Monique Gaspérini, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding[J]. Materials Science and Engineering: A, 2016, 656:130-141.

[7]余伟, 蔡庆伍, 吴伟, 等. 耐海水腐蚀不锈钢/碳钢复合带肋钢筋轧制技术[A]. 第十一届中国钢铁年会[C]. 北京: 2017.


Yu W, Cai Q W, Wu W, et al. Rolling technology for stainless steel/carbon steel composite rebar with seawater corrosion resistance[A]. Proceedings of the 11th CSM Steel Congress[C]. Beijing:2017.

[8]高亚男. 不锈钢/碳钢覆层钢筋轧制理论及实验研究[D]. 秦皇岛:燕山大学, 2011.

Gao Y N. Rolling Theory and Experimental Research of Stainless Steel/Carbon Steel Cladding Bar[D]. Qinhuangdao: Yanshan University, 2011.

[9]余伟, 张泽宇, 吴伟, 等. 不锈钢/碳钢耐蚀海水带肋钢筋轧制复合工艺[J]. 钢铁研究学报, 2019,31(4):380-386.

Yu W, Zhang Z Y, Wu W, et al. Rolling bonding process of stainless steel/carbon steel rebar with seawater corrosion resistance[J]. Journal of Iron and Steel Research, 2019, 31(4):380-386.

[10]张少坤. 不锈钢包覆铁屑复合轧制实验及有限元模拟[D]. 秦皇岛:燕山大学, 2014.

Zhang S K. The Composite Rolling Experiment and Finite Element Simulation of the Iron Scrap with Stainless Steel Coating[D]. Qinhuangdao: Yanshan University, 2014.

[11]Dyja H, Mróz S, Stradomski Z. Properties of joint in the bimetallic rods Cu-Al and Cu-steel after explosive cladding and the process of rolling[J]. Metalurgija, 2003, 42(3):185-191.

[12]Xie B, Sun M, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding[J]. Journal of Materials Processing Technology, 2020,283:1-14.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9