网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于克里金模型和多目标遗传算法的转向节模具参数优化
英文标题:Optimization on steering knuckle mold parameters based on Kriging model and multi-objective genetic algorithm
作者:徐杰 
单位:重庆工商职业学院 
关键词:转向节 克里金模型 多目标遗传算法 数值模拟 成形载荷 
分类号:TG316
出版年,卷(期):页码:2022,47(7):213-219
摘要:

 为了解决某转向节成形后存在填充不满、折叠、成形载荷太大以及表面成形质量差等缺陷,提出了基于克里金模型、多目标遗传算法和数值模拟技术相结合的优化策略。选取模具冲头斜度、冲头头部长羊角侧圆角半径、杆部与法兰盘连接处圆角半径3个参数作为设计变量,杆部末端欠填充距离和终锻最大成形载荷作为优化目标。首先,通过正交实验设计方法得到实验方案;其次,使用Deform-3D对每组实验进行数值模拟,得到设计变量与优化目标之间的响应数据;再次,使用克里金模型近似设计变量与优化目标之间的映射关系,并用多目标遗传算法对该近似模型进行全局寻优,获得前沿最优解集;最后,将优化的最优参数进行数值模拟和生产验证,模拟结果和生产结果证明了优化策略的有效性。采用最优模具参数能够得到成形效果良好的产品,且可将材料利用率从原来的75%提高至85%。

 In order to solve the defects of insufficient filling, folding, too large forming load and poor surface forming quality of a steering knuckle after forming, an optimization strategy based on Kriging model, multi-objective genetic algorithm and numerical simulation technology was proposed. The punch draft angle, the fillet radius of long sheep horn side for punch head and the fillet radius of connection between rod and flange were selected as the design variables, and the unfilled distance at the end of rod and the maximum forming load of final forging were selected as the optimization objectives. Firstly, the experimental scheme was obtained by orthogonal experimental design method. Secondly, each group of experiments was simulated by Deform-3D, and the response data between design variables and optimization objectives was obtained. Thirdly, the mapping relationship between design variables and optimization objectives was approximated by Kriging model, and the approximate model was globally optimized by multi-objective genetic algorithm to obtain the frontier optimal solution set. Finally, the optimized parameters were simulated and verified in production. The results show that the simulation results and production results prove the effectiveness of the optimization strategy. Therefore, the products with good forming effect are obtained by the optimized mold parameters, and the material utilization rate is increased from 75% to 85%. 

基金项目:
重庆自然科学基金资助项目(cstc2020jcyj-msxmX0940)
作者简介:
作者简介:徐杰(1981-),男,硕士,副教授 E-mail:xujie6896@163.com
参考文献:

 [1]王冬良, 陈南. 基于数值模拟的汽车转向节精密成形工艺[J]. 锻压技术, 2021, 46(11):38-43.


Wang D L, Chen N. Precision forming process for automobile steering knuckle based on numerical simulation[J]. Forging & Stamping Technology, 2021, 46(11):38-43.

[2]潘成海, 曾琦, 董旭刚, 等. 汽车转向节精锻工艺设计与锻造主机选型[J]. 锻压技术, 2021, 46(8):26-31.

Pan C H, Zeng Q, Dong X G, et al. Design on precision forging process of automobile steering knuckle and selection of forging main press[J]. Forging & Stamping Technology, 2021, 46(8):26-31.

[3]刘江, 徐皓. 基于Deform 3D的长杆类汽车转向节锻模设计及锻造工艺生产验证[J]. 锻压技术, 2021, 46(2):9-13.

Liu J, Xu H. Design on forging mold and production verification of forging process for automobile steering knuckle with long rod based on Deform 3D[J]. Forging & Stamping Technology, 2021, 46(2):9-13.

[4]徐皓, 刘江. 长城2020转向节锻模设计及其锻造工艺生产验证[J]. 锻压技术, 2021, 46(1):24-28.

Xu H, Liu J. Forging die design of Great Wall 2020 steering knuckle and production verification of its forging process[J]. Forging & Stamping Technology, 2021, 46(1):24-28.

[5]徐皓, 刘铭, 刘江. 基于Deform的依维柯汽车转向节的预锻优化[J]. 锻压技术, 2020, 45(1):30-34. 

Xu H, Liu M, Liu J. Pre-forging optimization on steering knuckle for IVEVO automobile based on Deform[J]. Forging & Stamping Technology, 2020, 45(1):30-34.

[6]徐皓, 刘江. JMC轻卡汽车转向节锻件设计及Deform数值模拟分析[J]. 锻压技术, 2020, 45(5):14-19.

Xu H, Liu J. Design on steering knuckle forgings for JMC truck and analysis on numerical simulation of Deform[J]. Forging & Stamping Technology, 2020, 45(5):14-19.

[7]代璐蔚. 非调质钢38MnVTi转向节热锻成形数值模拟及工艺优化[D]. 重庆:重庆理工大学, 2019.

Dai L W. Numerical Simulation and Process Optimization of Hot Forging Process for Steering Knuckle of 38MnVTi Nonquenched and Tempered Steel[D]. Chongqing: Chongqing University of Technology, 2019.

[8]张强, 刘阳. 基于Forge的汽车转向节模锻仿真分析[J]. 热加工工艺, 2020, 49(11):114-116,121.

Zhang Q, Liu Y. Simulation analysis of die forging of automobile steering joint based on Forge[J]. Hot Working Technology, 2020, 49(11):114-116, 121.

[9]齐羿. 汽车盘式转向节锻造工艺及成形过程数值模拟研究[D]. 济南:山东大学, 2021.

Qi Y. Research on Forging Process and Numerical Simulation of Forming Process of Automobile Disc Steering Knuckle[D]. Jinan: Shandong University, 2021.

[10]林磊, 周杰, 肖红. 农用车转向节闭式挤锻新工艺多目标优化[J]. 热加工工艺, 2014, 43(13):133-135.

Lin L, Zhou J, Xiao H. Multi-objective optimization of closed extrusion-forging new technology for agricultural vehicles steering knuckle[J]. Hot Working Technology, 2014, 43(13):133-135.

[11]Zhou J, Lin L, Luo Y. The multi-objective optimization design of a new closed extrusion forging technology for a steering knuckle with long rod and fork[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9-12):1219-1225.

[12]栾伟, 孙燕, 骆俊廷, 等. 42CrMo钢的本构关系与转向节臂成形工艺研究[J]. 塑性工程学报, 2016, 23(5):173-178.

Luan W, Sun Y, Luo J T, et al. Constitutive relationship of 42CrMo steel and forming technology of steering knuckle arm[J]. Journal of Plasticity Engineering, 2016, 23(5):173-178.

[13]付向辉, 张立刚, 李立, 等. 电絮凝除铊工艺的响应曲面优化[J].稀有金属,2020,44(5):530-539.

Fu X H, Zhang L G, Li L, et al.Optimization of electrocoagulation process for thallium removal from aqueous solutions by response surface methodology[J]. Chinese Journal of Rare Metals,2020,44(5):530-539.

[14]杨海, 周杰, 黄亮, 等. 基于数值模拟的转向节挤压工艺优化[J]. 热加工工艺, 2013, 42(1):72-74.

Yang H, Zhou J, Huang L, et al. Extrusion process optimization for steering knuckle based on numerical simulation[J]. Hot Working Technology, 2013, 42(1):72-74.

[15]林磊. 转向节闭式挤锻成形工艺研究[D]. 重庆:重庆大学, 2014.

Lin L. Research on the Closed Extrusion Forging Technology of a Steering Knuckle[D]. Chongqing:Chongqing University, 2014.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9