网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金锻造开坯变形均匀性数值模拟与实验验证
英文标题:Numerical simulation and experimental verification on deformation uniformity during forging-cogging process for aluminum alloy
作者:李鹏伟 李翌瑞 蔡安辉 王昕 周宏志 
单位:湖南理工学院 机械工程学院 复杂结构拓扑创新设计与制造湖南省工程研究中心 电磁装备设计与制造湖南省重点实验室 
关键词:锻造开坯 变形均匀性 多向镦粗 晶粒细化 2A14铝合金 
分类号:TG31
出版年,卷(期):页码:2022,47(8):1-6
摘要:

 锻造开坯变形均匀性是影响锻件质量的重要因素。以2A14铝合金为研究对象,利用Deform-3D有限元软件对锻坯应变场进行模拟,通过引入平均等效应变εave、变形均匀系数a,结合晶粒形貌观察和拉伸力学性能测试,对“单向镦粗”和“多向镦粗”两种锻造开坯工艺的变形均匀性进行定量和定性分析。研究结果表明:“多向镦粗”锻造开坯工艺的变形均匀性较“单向镦粗”锻造开坯工艺好,且锻造累积应变量越大,变形均匀性越好,力学性能各向异性越弱。2A14铝合金在多向镦粗锻造开坯过程中,随着累积应变量的增加,晶粒细化机制由晶粒破碎机制逐渐转变为连续动态再结晶机制。

  Deformation uniformity of forging-cogging is an important factor affecting the quality of forgings. Therefore, for 2A14 aluminum alloy, the strain field of forged-billet was simulated by finite element software Deform-3D. Then, by introducing average equivalent strain εave and deformation uniformity coefficient a, combined with the observation of grain morphology and 

the tensile test of mechanical properties, the deformation uniformity of “unidirectional upsetting” and “multi-directional upsetting” forging-cogging processes were quantitatively and qualitatively analyzed. The results show that the deformation uniformity of the “multi-directional upsetting” forging-cogging process is better than that of the “unidirectional upsetting” forging-cogging process, and the larger the accumulated strain amount is, the better the deformation uniformity and the weaker the anisotropy of mechanical properties are. In the process of multi-directional upsetting forging-cogging process for 2A14 aluminum alloy, with the increasing of accumulated strain amount, the grain refinement mechanism gradually changes from the grain crushing mechanism to the continuous dynamic recrystallization mechanism.
基金项目:
湖南省自然科学基金青年项目(2020JJ5215);电磁装备设计与制造湖南省重点实验室开放基金项目(DC202007)
作者简介:
作者简介:李鹏伟(1985-),男,博士,讲师,E-mail:mselpw@163.com;通信作者:周宏志(1972-),男,博士,教授,E-mail:zhoubox@sina.com
参考文献:

[1]王祝堂. 铝材在国产大飞机上的应用[J]. 轻合金加工技术, 2016, 44(11): 1-8.


Wang Z T. Application of aluminum materials on domestic large aircrafts[J]. Light Alloy Manufaction Technology, 2016, 44(11): 1-8.


[2]黄同瑊, 秦宇, 晁代义, . 大尺寸Al-Cu-Mg-Mn 合金铸锭均匀化工艺研究[J]. 材料导报, 2020, 34 (S1): 325-327.


Huang T J, Qin Y, Chao D Y, et al. Study on homogenization process of large size Al-Cu-Mg-Mn alloy ingot [J]. Materials Review, 2020, 34S1: 325-327.


[3]陈楠, 刘薇娜. 镦拔工艺对4Cr5MoSiV1钢组织和性能的影响[J]. 热加工工艺,2021, 50(1): 92-94.


Chen N, Liu W N. Effect of upsetting and drawing process on microstructure and properties of 4Cr5MoSiV1 steel [J]. Hot Working Technology, 2021, 50(1): 92-94.


[4]郭强, 严红革, 张辉, . 多向锻造技术研究进展[J]. 材料导报, 2002, 21(2): 106-108.


Guo Q, Yan H G, Zhang H, et al. Research progress of multiple forging technology [J]. Materials Review, 2002, 21(2): 106-108.


[5]周立华, 骆静, 向渝. 始锻温度对自由锻造6061铝合金力学性能影响的研究[J]. 热加工工艺, 2020, 49(13): 109-119.


Zhou L H, Luo J, Xiang Y. Effect of initial forging temperature on mechanical properties of free-forging 6061 aluminum alloy [J]. Hot Working Technology, 2020, 49(13): 109-119.


[6]林新农, 代长安. 新型铝合金机械零件锻造工艺优化[J]. 热加工工艺, 2019, 48(13): 90-92.


Lin X N, Dai C A. Forging process optimization of new type aluminum alloy mechanical parts[J]. Hot Working Technology, 2019, 48(13): 90-92.


[7]贺佳阳, 吴吉文. 锥形砧镦粗工艺数值模拟及锥角优化研究[J]. 南方农机, 2020, 51(21): 129-130.


He J Y, Wu J W. Numerical simulation of upsetting process and optimization of cone angle for taper anvil [J]. China Southern Agricultural Machinery, 2020, 51(21): 129-130.


[8]郭强, 严红革, 陈振华, . 多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J]. 金属学报, 2006, 42(7): 739-744.


Guo Q, Yan H G, Chen Z H, et al. Effect of multiple forging process on micro-structure and mechanical properties of magnesium alloy AZ80[J]. Acta Metallurgica Sinica, 2006, 42(7): 739-744.


[9]黄东英, 张磊, 刘晓红. 7075铝合金多向锻造过程的元胞自动机数值模拟[J]. 锻压技术, 2021, 46(12): 13-19.


Huang D Y, Zhang L, Liu X H. Numerical simulation on cellular in multi-direction forging process of 7075 aluminum alloy[J]. Forging & Stamping Technology, 2021, 46(12): 13-19.


[10]Li P W, Li H Z, Huang L, et al. Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1677-1688.


[11]吴炬, 向国权, 程先华. 模具外接圆弧角对纯铝ECAE影响的有限元分析[J]. 上海交通大学学报,2005, 39(7): 1063-1065.


Wu J, Xiang G Q, Cheng X H. Finite element analysis of influence of curvature angle ψ of the outside corner on ECAE of pure aluminum [J]. Journal of Shanghai Jiaotong University, 2005, 39(7): 1063-1065.


[12]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1Method of test at room temperature [S].


[13]Sitdikov O, Sakai T, Goloborodko A, et al. Effect of pass strain on grain refinement in 7475 Al alloy during hot multidirectional forging [J]. Materials Transactions, 2004, 45(7): 2232-2238.


[14]Sitdikov O, Sakai T, Goloborodko A, et al. Grain refinement in coarse-grained 7475 Al alloy during severe hot forging [J]. Philosophical Magazine, 2005, 85(11): 1159-1175.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9