[1]赵宇辉, 王志国, 赵吉宾, 等. 冷却条件对等离子弧送粉增材316L不锈钢组织性能影响研究[J]. 稀有金属, 2021, 45(9): 1062-1069.
Zhao Y H, Wang Z G, Zhao J B, et al. Microstructure and properties of plasma arc powder additive manufactured 316L stainless steel with different cooling conditions[J]. Chinese Journal of Rare Metals, 2021, 45(9): 1062-1069.
[2]田继红, 张学瑞, 秦凤明, 等. Mn18Cr18N电渣重熔钢的热压缩工艺模拟与实验研究[J]. 锻压技术, 2020, 45(5): 185-191.
Tian J H, Zhang X R, Qin F M, et al. Simulation and experimental research on hot compression process for Mn18Cr18N ESR steel[J]. Forging & Stamping Technology, 2020, 45(5): 185-191.
[3]王艺南, 兰亮云, 张一婷, 等. 轧态904L超级奥氏体不锈钢动态再结晶行为[J]. 塑性工程学报, 2021, 28(7): 138-144.
Wang Y N, Lan L Y, Zhang Y T, et al. Dynamic recrystallization behavior of as-rolled 904L super austenitic stainless steel[J]. Journal of Plasticity Engineering, 2021, 28(7): 138-144.
[4]齐珂, 隋大山, 陈飞, 等. 316LN钢奥氏体晶粒长大模型[J]. 塑性工程学报, 2014, 21(3): 98-103.
Qi K, Sui D S, Chen F, et al. Study on austenite grain growth behavior of 316LN steel[J]. Journal of Plasticity Engineering, 2014, 21(3): 98-103.
[5]吴从风, 李时磊, 张海龙, 等. 316LN奥氏体不锈钢的高温拉伸断裂行为[J]. 材料研究学报, 2014, 28(7): 481-489.
Wu C F, Li S L, Zhang H L, et al. On high temperature tensile fracture behavior of 316LN austenitic stainless steel[J]. Chinese Journal of Materials Research, 2014, 28(7): 481-489.
[6]赵晓东. 304不锈钢热变形条件下动态再结晶行为研究[D]. 太原: 太原科技大学, 2009.
Zhao X D. Study on Dynamic Recrystallization Behavior of 304 Stainless Steel under Hot Deformation[D]. Taiyuan: Taiyuan University of Science & Technology, 2009.
[7]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10): 107-112.
[8]裴文娇, 郭训忠, 王文涛, 等. 316L 奥氏体不锈钢的高温流变行为[J]. 塑性工程学报, 2014, 21 (3): 104-110.
Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature[J]. Journal of Plasticity Engineering, 2014, 21 (3): 104-110.
[9]胡峰. 含铌奥氏体不锈钢热变形行为及热加工图[D]. 镇江: 江苏大学, 2018.
Hu F. Hot Deformation Behavior and Processing Map of Austenitic Stainless Steel Containing Niobium[D]. Zhenjiang: Jiangsu University, 2018.
[10]齐珂. 核电用钢316LN动态再结晶行为实验研究与数值模拟[D]. 上海: 上海交通大学, 2014.
Qi K. Experimental and Numerical Study on Dynamic Recrystallization of 316LN Nuclear Power Steel[D]. Shanghai: Shanghai Jiao Tong University, 2014.
[11]许树森, 史宇麟, 黄国军, 等. 大型管板锻造工艺研究[J]. 矿山机械, 2002,(4): 64-66.
Xu S S, Shi Y L, Huang G J, et al. Study on forging process of large tube sheet[J]. Mining & Processing Equipment, 2002,(4): 64-66.
[12]薛永栋, 胡振志, 陈明, 等. 特大型管板锻造工艺技术研究[J]. 热加工工艺, 2018, 47(15): 153-156.
Xue Y D, Hu Z Z, Chen M, et al. Research on forging technology of ultra-large tube plate[J]. Hot Working Technology, 2018, 47 (15): 153-156.
[13]许树森, 史宇麟, 陈钢, 等. 锻造特大型管板的工艺方法[P]. 中国: 200510018071.5,2008-08-06.
Xu S S,Shi Y L,Chen G,et al. Forging process method of ultra-large tube plate[P].China: 200510018071.5,2008-08-06.
[14]GB/T 6394—2017, 金属平均晶粒度测定方法[S].
GB/T 6394—2017, Deter mination of estimating the average grain size of metal[S].
[15]GB/T 10561—2005, 钢中非金属夹杂物含量的测定标准评级图显微检验法[S].
GB/T 10561—2005, Steel—Determination of content of nonmetallic inclusions—Micrographic method using standards diagrams[S].
[16]NB/T 20003.2—2010, 核电厂核岛机械设备无损检测第2部分:超声检测[S].
NB/T 20003.2—2010, Non-destructive testing for mechanical components in nuclear island of nuclear power plants—Part 2: Ultrasonic testing[S].
|