网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于晶体塑性有限元的转向架盖板压形回弹预测
英文标题:Springback prediction on bogie cover plate pressing based on crystal plastic finite element
作者:何广忠 张学广 李明 崔琪 王震 邢丰琪 
单位:中车长春轨道客车股份有限公司 吉林大学 
关键词:各向异性 回弹 压形工艺 S355J2W钢 转向架盖板 
分类号:TG302
出版年,卷(期):页码:2022,47(8):47-52
摘要:

 针对S355J2W钢板材由于具有显著的各向异性而使其在模具压形工艺中的回弹难以预测的问题。以高速动车组转向架侧梁上盖板成形为例,对S355J2W钢的晶粒与织构进行了分析并对其各向异性进行了量化,获得了材料晶体塑性本构模型的关键参数,并使用晶体塑性有限元方法评估了其各向异性的力学性能以及Hill48屈服准则的模型参数。建立了转向架侧梁上盖板压形过程仿真模型,分别采用Von Mises及Hill48屈服准则来模拟工件成形后的应力释放及回弹效应,并开展了侧梁上盖板压形实验进行验证,实验结果和仿真结果吻合。各向同性模型和各向异性模型预测结果的对比表明,采用各向异性材料模型可以更准确地预测侧梁上盖板的回弹。

 Aiming at the problem that the springback of S355J2W steel plate in the die pressing process was difficult to predict due to its remarkable anisotropy, for the forming of side beam upper cover plate for high-speed EMU bogie, the grain and texture of S355J2W steel were analyzed, and the anisotropy of the material was quantified. Then, the key parameters of crystal plastic constitutive model were obtained, and the anisotropy mechanical properties and the model parameters of Hill48 yield criterion were evaluated by crystal plastic finite element method (CPFEM). Furthermore, a simulation model of the pressing process for bogie upper cover plate of side beam was established, and the stress release and springback effect of the workpiece after forming were simulated by Von Mises and Hill48 yield criterion. Meanwhile, the side beam upper cover plate pressing test was carried out to verify the results, and the test results were consistent with the simulation results. The comparison of the prediction results between the isotropic and anisotropic models shows that the anisotropic material model can predict the springback of the side beam  upper cover plate more accurately.

基金项目:
国家自然科学基金资助项目(51735231)
作者简介:
作者简介:何广忠(1978-),男,博士,教授级高级工程师,E-mail:crc_hgzhong@126.com
参考文献:

 [1]张永亮, 王强,李凯. 高强钢板梁类零件冷冲压回弹控制方法研究[J].汽车工艺与材料, 2020,(12): 5-9.


Zhang Y L, Wang Q, Li K. Research on springback control method of cold pressed high-strength steel plate girder[J]. Automobile Technology & Material,2020,(12):5-9.


[2]廖阳. 汽车冷冲压U形梁卷曲的控制[J].汽车实用技术, 2017,(24):149-150.


Liao Y. Automobile cold stamping U-shaped beam control[J]. Automobile Applied Technology, 2017,(24):149-150.


[3]马利, 缪存坚, 朱晓波, . 奥氏体不锈钢冷冲压标准椭圆形封头塑性变形预测方法研究[J]. 机械工程学报, 2015, 51 (6): 20-24.


Ma L, Miao C J, Zhu X B, et al. Research on prediction method of plastic deformation for cold stamping formed standard elliptical head made of austenitic stainless steel[J]. Journal of Mechanical Engineering, 2015, 51 (6): 20-24.


[4]谷诤巍, 蔡中义, 徐虹, . 帽形截面冷冲压件的回弹分析及补偿[J]. 清华大学学报:自然科学版, 2010, 50 (2): 200-203.


Gu Z W, Cai Z Y, Xu H, et al. Springback analysis and compensation for cold stamping parts with hat cross sections [J]. Journal of Tsinghua UniversityScience and Technology, 2010, 50 (2): 200-203.


[5]张旭, 周杰. 超高强度钢防撞梁热成形改冷冲压工艺设计及优化[J]. 重庆大学学报, 2011, 34 (1): 78 -81.


Zhang X, Zhou J. Optimization and springback control of ultra-high strength steel anti-collision side beam forming process [J]. Journal of Chongqing University, 2011, 34 (1): 78-81.


[6]Chung K, Lee M G, Kim D, et al. Springback evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part I: Theory and formulation[J]. International Journal of Plasticity, 2005, 21(5):861-882.


[7]Lee J Y, Lee J W, Lee M G, et al. An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending[J]. International Journal of Solids and Structures, 2012, 49(25): 3562-3572.


[8]Geng L M, Shen Y, Wagoner R H. Anisotropic hardening equations derived from reverse-bend testing[J]. International Journal of Plasticity, 2002, 18(5): 743-767.


[9]Chatti S, Hermi N. The effect of non-linear recovery on springback prediction[J]. Computers & Structures, 2011, 89(13): 1367-1377.


[10]Chen P, Ko M. Simulation of springback variation in forming of advanced high strength steels[J]. Journal of Materials Processing Technology, 2007, 190(1): 189-198.


[11]Gau J T, Kinzel G L. A new model for springback prediction in which the Bauschinger effect is considered[J]. International Journal of Mechanical Sciences, 2001, 43(8): 1813-1832.


[12]Oliveira M C, Alves J L, Chaparro B M, et al. Study on the influence of work-hardening modeling in springback prediction[J]. International Journal of Plasticity, 2007, 23(3): 516-543.


[13]Liu W C, Chen B K, Pang Y. Numerical investigation of evolution of earing, anisotropic yield and plastic potentials in cold rolled FCC aluminium alloy based on the crystallographic texture measurements[J]. European Journal of Mechanics-A/Solids, 2019, 75: 41-55.


[14]Esmaeilpour R, Kim H, Park T, et al. Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet[J]. International Journal of Mechanical Sciences, 2018, 145: 24-41.


[15]Liu C G, Li M, Yue T, et al. Thick anisotropy analysis for AA7B04 aluminum plate using CPFEM and its application for springback prediction in multi-point bending[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115: 1139-1153.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5