网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
刚性模和柔性介质拉深成形工艺对GLARE层板筒型件成形极限及壁厚分布的影响规律
英文标题:Influence law of rigid die and flexible medium deep drawing process on forming limit and wall thickness distribution for GLARE laminate cylindrical parts
作者:门向南 闫东东 郎利辉 张弛烨 郭庆磊    
单位:成都飞机工业(集团)有限责任公司 北京航空航天大学 北京卫星环境工程研究所  中国人民解放军93175部队 
关键词:GLARE层板 成形极限 壁厚分布 破裂形式 柔性介质拉深成形 
分类号:TB333
出版年,卷(期):页码:2022,47(8):53-59
摘要:

 开展了刚性模和柔性介质拉深成形工艺对0°和45°方向纤维铺层方式的未固化GLARE层板筒型件的壁厚分布、成形极限及破裂形式的影响规律研究。结果表明,柔性介质拉深成形工艺较刚性模拉深成形工艺下未固化GLARE层板筒型件的最小壁厚增加了0.01 mm,壁厚分布更加均匀;采用柔性介质拉深成形GLARE层板筒型件时,沿0°方向纤维铺层较沿45°方向纤维铺层的成形极限深度提高了15.2%;此外,纤维铺层方向还影响着GLARE层板筒型件的破裂形式,筒型件的破裂位置与铺层方向一致。因此,采用柔性介质拉深成形工艺可制备更深的GLARE层板筒型件,同时结合不同结构的构件优化纤维的铺层方式,可提高构件的壁厚一致性,避免构件在成形过程中产生破裂缺陷。

  The influence laws of rigid die and flexible medium deep drawing process on wall thickness distribution, forming limit and fracture mode for uncured GLARE laminate of cylindrical part with fiber layout modes along 0° and 45°  directions were studied. The results show that compared with the rigid die deep drawing process, the minimum wall thickness of the uncured GLARE laminate of cylindrical part is increased by 0.01 mm, the wall thickness distribution is more uniform, and the forming limit depth of the GLARE laminate of cylindrical part with 0° direction fiber layout is 15.2% higher than that with 45° direction fiber layout in the flexible medium deep drawing process. In addition, the fiber layout direction also affects the fracture mode of GLARE laminate cylindrical part, and the fracture position of cylindrical part is consistent with the fiber layout direction. Therefore, the deeper GLARE laminate cylindrical part can be prepared by the flexible medium deep drawing process, and at the same time, the fiber layout mode can be optimized by combining optimized fiber layout mode for components with different structures to improve the wall thickness consistency of component and avoid the fracture defects in the forming process.

基金项目:
四川省科技计划项目(2019YFSY0034)
作者简介:
作者简介:门向南(1983-),男,硕士,高级工程师,E-mail:mxn19830726@163.com
参考文献:

 [1]曹增强. 纤维金属层板及其在飞机结构中的应用[J]. 航空制造技术,2006(6): 60-62.


Cao Z Q. Fiber metal laminates and its application in aircraft structure[J]. Aeronautical Manufacturing Technology 2006(6): 60-62.


[2]Vlot A, Gunnink J W. Fibre Metal Laminates:An Introduction[M]. LondonKluwer Academic Publishers2001.


[3]Sinmazelik T, Avcu E, Bora M , et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design2011, 32(7): 3671-3685.


[4]Park S Y,Choi W J, Choi H S, et al. A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring[J]. The International Journal of Advanced Manufacturing Technology,2010, 49, 605-613.


[5]Huang Y, Liu J Z, Huang X, et al. Delamination and fatigue crack growth behavior in fiber metal laminates (glare) under single overloads[J]. International Journal of Fatigue, 2015, 7853-60.


[6]陶杰,李华冠,潘蕾,等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报,2015, 47(5): 626-636.


Tao J, Li H G, Pan L, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics2015, 47(5): 626-636.


[7]Palkowski H, Stanic V, Carradò A. Multilayer roll-bonded sandwich: Processing, mechanical performance, and bioactive behavior[J]. The Journal of The Minerals, Metals & Materials Society2012, 64(4): 514-519.


[8]Sinke J. Manufacturing of GLARE parts and structures[J]. Applied Composite Materials2003, 10(4-5): 293-305.


[9]Edwardson S P, Dearden G, Watkins Ket al. Laser forming of bre metal laminates[J]. Lasers in Engineering2005 153: 233-255.


[10]Russig C, Bambach M, Hirt G, et al. Shot peen forming of fiber metal laminates on the example of GLARE[J]. International Journal of Material Forming 2014, 7(4): 425-438.


[11]Mylonas G I, Labeas G. Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction[J]. Surface & Coatings Technology 2011, 205(19): 4480-4494.


[12]Mosse L, Compston P, Cantwell W J, et al. The effect of process temperature on the formability of polypropylene based fibre-metal laminates[J]. Composites Part A: Applied Science and Manufacturing 2005, 36(8): 1158-1166.


[13]Mosse L, Compston P, Cantwell W J, et al. Stamp forming of polypropylene based fibre-metal laminates: The effect of process variables on formability[J]. Journal of Materials Processing Technology 2006, 172(2): 163-168.


[14]Gresham J, Cantwell W, Cardew-Hall M J, et al. Drawing behaviour of metal-composite sandwich structures[J]. Composite Structures2006, 75(1-4): 305-312.


[15]Rajabi A M, Kadkhodayan M, Ghanei S. An investigation into the flexural and drawing behaviors of GFRP-based fiber-metal laminate[J]. Mechanics of Advanced Materials & Structures 2017, 10(25): 805-812.


[16]Liu S C, Lang L H, Sherkatghanad E, et al. Investigation into the fiber orientation effect on the formability of GLARE materials in the stamp forming process[J]. Applied Composite Materials, 2018, 25(2): 255-267.


[17]Wollmann T, Hahn M, Wiedemann S, et al. Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing[J]. Archives of Civil and Mechanical Engineering, 2018, 18(2): 442-450.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9