网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6063铝合金航空铆钉等径角挤压-冷镦复合成形实验研究
英文标题:Experimental study on equal channel angular pressing and cold upsetting composite forming for 6063 aluminum alloy aviation rivets
作者:李诗谦 何涛 霍元明 姚婷婷 贾东昇 李汉林 
单位:上海工程技术大学 
关键词:6063铝合金 等径角挤压(ECAP) 冷镦 力学性能 铆钉失效 
分类号:TG146.21
出版年,卷(期):页码:2022,47(8):138-145
摘要:

 为了探究等径角挤压-冷镦复合成形的铝合金航空铆钉的力学性能及失效形式,对6063铝合金航空铆钉进行了等径角挤压-冷镦复合成形实验及不同类型的失效实验,并通过SEM观察成形铆钉的断口形貌。结果表明:相对单一冷镦成形铆钉,纯拉伸时,复合成形铆钉承受的最大拉伸载荷提升了约14.2%,失效形式均为头部拉脱失效,微观断口的孔洞数目明显减少且韧窝变浅;纯剪切时,复合成形铆钉承受的最大剪切载荷提升了约15.2%,失效形式均为沿剪切方向的杆部剪断失效,且断口表面的剪切韧窝变大、变浅;复合加载时,复合成形铆钉承受的最大载荷提升了约45.6%,失效形式均为杆部以一定角度弯曲的剪切断裂失效,且断口表面存在更多的剪切韧窝。

 In order to explore the mechanical properties and failure forms of aluminum alloy aviation rivets formed by equal channel angular pressing(ECAP)and cold upsetting(CU) composite forming, for 6063 aluminum alloy aviation rivets, the ECAP-CU composite forming experiments and different types of failure experiments were carried out, and the fracture morphology of formed rivets was observed by SEM. The results show that compared with the rivet formed by single cold upsetting, the maximum tensile load of the rivet by the composite forming is increased by about 14.2% in pure tension, the failure form is pull-off failure of head, the number of holes in the micro-fracture is significantly reduced, and the dimples become shallow. However, in pure shear, the maximum shear load of the rivet by the composite forming is increased by about 15.2%, the failure form is the shear failure of rod along the shearing direction, and the shear dimples on the fracture surface become larger and shallower. When composite loading, the maximum load of the rivet by the composite forming is increased by about 45.6%, the failure form is shear fracture in which the rod is bent with a certain angle, and more shear dimples appear on the fracture surface.

基金项目:
上海市自然科学基金资助项目(20ZR1422100);国家重点研发项目(2018YFB1307900);上海市人才发展资金资助项目(2019022)
作者简介:
作者简介:李诗谦(1996-),男,硕士研究生,E-mail:worklishiqian@163.com;通信作者:何涛(1979-),男,博士,教授,E-mail:hetao@sues.edu.cn
参考文献:

 [1]王肇宇. 国际航空航天紧固件发展现状及趋势研究[J]. 宇航总体技术, 2018,2(4):1-7.


Wang Z Y. The study of international aerospace fastener status and development trend[J]. Astronautical Systems Engineering Technology, 2018,2(4):1-7.


[2]曹增强. 应对我国大飞机研制的装配连接技术[J]. 航空制造技术, 2009,10(2): 88-91.


Cao Z Q. Assembly connecting technology for the research of China large aircraft[J]. Aeronautical Manufacturing Technology, 2009,10(2): 88-91.


[3]Jin Z, Mallick P K. Effect of cold work on the tensile and fatigue performance of aluminum alloy 5754[J]. Journal of Materials Engineering & Performance, 2006,15(5):540-548.


[4]董义兵, 刘涛, 刘利江. 航空铝合金及其材料加工[J]. 中国高新科技, 2018,11(3): 52-54.


Dong Y B, Liu T, Liu L J. Aviation aluminum alloy and material processing[J]. China High-Tech, 2018,11(3): 52-54.


[5]杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005,19(2): 76-80.


Yang S J, Dai S L. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Review, 2005,19(2): 76-80.


[6]Huang Y Y, Hu Z L, Wang J J. Research progress on the aluminum alloy with high thermal conductivity[J]. Applied Mechanics and Materials, 2014,32(10): 396-400.


[7]冯晓旻,谢兰生. 铆接变形的有限元分析[J]. 机械制造与自动化, 2009,38(2): 62-63.


Feng X M, Xie L S. Rivet deformation and finite element analysis[J]. Machine Building & Automation, 2009,38(2): 62-63.


[8]刘全明,张朝晖,刘世锋,等. 航空紧固件用钛合金TC16研究与发展[J]. 热加工工艺,201443(4):17-19.


Liu Q M, Zhang C H, Liu S F, et al. Research and development of aerospace fasteners made with TC16 alloy[J]. Hot Working Technology, 201443(4):17-19.


[9]许晓静, 张允康, 邓平安, . 预回复退火对7085铝合金挤压材组织和性能的影响[J]. 材料热处理学报, 2014,35(8): 36-40.


Xu X J, Zhang K Y, Deng P A, et al. Effect of pre-recovery-annealing treatment on microstructure and properties of extruded 7085 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2014,35(8): 36-40.


[10]Salvo J G J D, Afonso C R M. Fatigue strength and microstructure evaluation of Al 7050 alloy wires recycled by spray forming, extrusion and rotary swaging[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3195-3209.


[11]Monika Karoń, Marcin Adamiak. Characterization of microstructure and mechanical properties of 6060 aluminum alloy processed by ECAP[J]. Solid State Phenomena, 2018,275(5):81-88.


[12]Gu Y X, Ma A B, Jiang J H, et al. Research progress of ultrafine-grained pure titanium produced by equal-channel angular pressing[J]. Rare Metal Materials & Engineering,2017,47(12):3639-3644.


[13]张忠明, 王锦程, 唐文亭, . 等通道转角挤压(ECAP)工艺的研究现状[J]. 铸造技术, 2004,25(1):10-12.


Zhang Z M, Wang J C, Tang W T, et al. Status of equal channel angular pressing(ECAP)[J], Foundry Technology, 2004,25(1):10-12.


[14]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Materialia, 2004, 52(15):4589-4599.


[15]Kim W J, Sa Y K, Kim H K, et al. Plastic forming of the equal-channel angular pressing processed 6061 aluminum alloy[J]. Materials Science and Engineering: A,2008, 10(69): 360-368.


[16]杨沛, 郭亚洲, 李玉龙. 航空铆钉的动态力学性能测试[J]. 航空学报, 2014,35(11):3012-3024.


Yang P, Guo Y Z, Li Y L. Dynamic mechanical test of aeronautic rivets[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(11):3012-3024.


[17]汪存显, 高豪迈, 龚煦, . 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019,40(1):289-301.


Wang C X, Gao H M, Gong X, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(1):289-301.


[18]解江, 白春玉, 舒挽, . 航空铆钉动态加载失效实验[J]. 爆炸与冲击, 2017, 37(5):879-886.


Xie J, Bai C Y, Shu W, et al. Dynamic loading failure experiment of aeronautic rivet[J]. Explosion and Shock Waves, 2017, 37(5):879-886.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9