网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
固溶时间对Sr/Ce复合变质A357合金组织和性能的影响
英文标题:Influence of solution time on microstructure and properties for A357 alloy with Sr/Ce complex modification
作者:王波 李青 刘让贤 陈胜迁 
单位:张家界航空工业职业技术学院 广州工商学院 
关键词:A357合金 固溶时间 Mg2Si 共晶硅 富铁相 
分类号:TG292
出版年,卷(期):页码:2022,47(8):200-207
摘要:

 采用金相显微镜、扫描电子显微镜、拉伸试验机和显微硬度仪,研究了不同固溶时间下Sr/Ce复合变质A357合金的组织和性能,并讨论了第二相特征的演变过程及其对合金性能的影响。研究结果表明:T6热处理后,共晶硅和Mg2Si的面积分数均显著的降低,并随着固溶时间的延长而呈现先降低后增加的趋势。共晶硅的等效直径随着固溶时间的延长而增大,但相应的形状系数逐渐提高。合金的抗拉强度、屈服强度和显微硬度均显著提高,但伸长率大幅降低。随着固溶时间的延长,合金的强度和显微硬度均呈现先增加后降低的趋势,而伸长率则逐渐降低。当固溶时间为4 h时,合金中残留的Mg2Si含量最少,共晶硅的尺寸较小且球形度较高,合金的综合力学性能达到最佳。合金的抗拉强度、屈服强度、伸长率和显微硬度分别达到350 MPa、290 MPa、6.5%和125 HV。

 The microstructure and properties of A357 alloy with Sr/Ce complex modification under different solution time were studied by metallurgical microscope, scanning electron microscope, tensile testing machine and microhardness tester, and the evolution process of the second phase characteristics and their effects on the properties of the alloy were discussed. The research results show that the area fractions of eutectic silicon and Mg2Si both decrease significantly after T6 heat treatment and show a trend of first decrease and then increase with the extending of solution time. However, the equivalent diameter of eutectic silicon increases with the extending of solution time, and the corresponding shape factor gradually increases. The tensile strength, yield strength and microhardness of the alloy are significantly improved, but the elongation is greatly reduced. With the extending of solution time, the strength and microhardness of the alloy show a trend of first increase and then decrease, while the elongation gradually decreases. When the solution time is four hours, the residual Mg2Si content in the alloy is the least, the size of eutectic silicon is smaller and the sphericity is higher, and the comprehensive mechanical properties of the alloy are the best. The tensile strength, yield strength, elongation and microhardness of the alloy reach 350 MPa, 290 MPa, 6.5% and 125 HV, respectively.

基金项目:
湖南省自然科学基金资助项目(2020JJ7074);广东省金属强韧化技术与应用重点实验室开放课题
作者简介:
作者简介:王波(1987-),女,硕士,副教授,E-mail:zjjlalawww@126.com
参考文献:

 [1]宋东福, 曾强, 赵愈亮, . Fe含量对ADC12铝合金组织和性能的影响[J].稀有金属,2021,45(7):796-803.


Song D F, Zeng Q, Zhao Y L, et al. Microstructure and properties of ADC12 aluminum alloy with different Fe contents[J]. Chinese Journal of Rare Metals,2021,45(7):796-803.


[2]张佳虹, 邢书明. Al-Si合金变质元素及其交互作用[J].材料导报, 2018, 32(11): 1870-1877.


Zhang J H, Xing S M. Modifying elements and their interaction in Al-Si alloy[J]. Materials Reports, 2018, 32(11): 1870-1877.


[3]陈延伟, 刘佳琳,赵亚鹏.铸造铝合金在舰船装备应用中存在的问题及发展趋势[J]. 铸造, 2020, 69(4): 329-334.


Chen Y W, Liu J L, Zhao Y P. Existing problems and development prospect of application of cast aluminum alloys to warship equipment[J]. Foundry, 2020, 69(4): 329-334.


[4]Petráková K, Kondás J, Guagliano M. Mechanical performance of cold-sprayed A357 aluminum alloy coatings for repair and additive manufacturing[J]. Journal of Thermal Spray Technology, 2017, 26(8):1888-1897.


[5]刘兵, 彭超群, 王日初, . 大飞机用铝合金的研究现状及展望[J].中国有色金属学报, 2010, 20(9): 1705-1715.


Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.


[6]李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J].材料科学与工艺, 2020, 28(5): 47-61.


Li G J, Liu X L. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61.


[7]王钰, 周旭, 李秀兰. 铸造铝合金的强韧化研究进展[J]. 轻金属, 2018,(10): 54-58.


Wang Y, Zhou X, Li X L. Research progress on strengthening-toughening of cast aluminum alloys[J]. Light Metals, 2018,(10): 54-58.


[8]长海博文, 吴永福. Al-Si系合金共晶Si变质处理的研究进展[J].特种铸造及有色合金, 2016, 36(9): 924-930.


Nagaumi H, Wu Y F. Recent progress in eutectic silicon modification of Al-Si alloys[J]. Special Casting & Nonferrous Alloys, 2016, 36(9): 924-930.


[9]仲召军, 李龙, 周德敬. 铸造Al-Si合金细化变质处理技术的研究进展[J]. 铸造, 2016, 65(3): 242-247.


Zhong Z J, Li L, Zhou D J. Development of refining and modification for cast Al-Si alloy[J]. Foundry, 2016, 65(3): 242-247.


[10]Liao C W, Chen J, Li Y, et al. Morphologies of Al4Sr intermetallic phase and its modification property upon A356 alloys[J]. Journal of Materials Science & Technology, 2012, 28(6):524-530.


[11]Zhu M, Yang G C, Yao L Jet al. Influence of Al-Ti-B addition on the microstructure and mechanical properties of A356 alloys[J]. Rare Metals, 2009, 28 (2):77-82.


[12]Li P T, Liu S D, Zhang L L, et al. Grain refinement of A356 alloy by Al-Ti-B-C master alloy and its effect on mechanical properties[J]. Materials & Design, 2013, 47:522-528.


[13]Aguirre-De la Torre E, Pérez-Bustamante R, Camarillo-Cisneros J, et al. Mechanical properties of the A356 aluminum alloy modified with La/Ce[J]. Journal of Rare Earths, 2013, 31(8):811-816.


[14]Tao R, Zhao Y T, Kai X Z, et al. The effects of Er addition on the microstructure and properties of an in-situ nano ZrB2-reinforced A356.2 composite[J]. Journal of Alloys and Compounds, 2017, 731: 200-209.


[15]Pourbahari B, Emamy M. Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy[J]. Materials & Design, 2016, 94:111-120.


[16]李登元. 稀土钇及热处理工艺对ZL114A合金组织和性能的影响[D]. 长沙:湖南大学, 2018.


Li D Y. Effect of Rare-earth Yttrium and Heat Treatment on Microstructure and Properties of ZL114A Alloy[D]. ChangshaHunan University, 2018.


[17]李文树, 宋东福, 周海涛, . 细化变质处理对A356.1合金组织和力学性能的影响[J]. 中国有色金属学报, 2020, 30(7): 1491-1501.


Li W S, Song D F, Zhou H T, et al. Effect of refinement and modification treatment on microstructure and mechanical properties of A356 alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(7): 1491-1501.


[18]Wang X J, Xu C, Muhammad A, et al. Effects of Al-Ti-B-RE grain refiner on microstructure and mechanical properties of Al-7.0Si-0.55Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7):2244-2250.


[19]Qiu C R, Miao S N, Li X R, et al. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy[J]. Materials & Design, 2017,114: 563-571.


[20]郝丽荣, 徐聪, 王文红,. Al-Ti-B-Sr细化变质剂对A357铝合金组织和力学性能的影响[J]. 轻合金加工技术, 2014, 42(3): 28-31.


Hao L R, Xu C, Wang W H, et al. Effect of Al-Ti-B-Sr refinement modifier on the microstructure and mechanical properties of A357 aluminum alloy[J]. Light Alloy Fabrication Technology, 2014, 42(3): 28-31.


[21]Chen Z Q, Jia J Y, Hu W X, et al. Combining effect of Er and Sr on microstructure and mechanical properties of as-casted A356 alloy[J]. Rare Metal Materials and Engineering, 2020, 49 (10):108-114.


[22]Wu D Y, Kang J, Feng Z H, et al. Utilizing a novel modifier to realize multi-refinement and optimized heat treatment of A356 alloy[J]. Journal of Alloys and Compounds, 2019, 791:628-640.


[23]Wang Q G, Davidson C J. Solidification and precipitation behaviour of Al-Si-Mg casting alloys[J]. Journal of Materials Science, 2001, 36(3): 739-750.


[24]Liu M W, Zheng R X, Xiao W L, et al. Concurrent enhancement of strength and ductility for Al-Si binary alloy by refining Si phase to nanoscale[J]. Materials Science & Engineering A, 2019, 751(5)303-310.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9