网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
时效处理对冷轧铜镍硅合金板带组织及性能的影响
英文标题:Effect of aging treatment on microstructure and properties of cold rolled Cu-Ni-Si alloy strip
作者:刘劲松 武安琪 王松伟 陈帅峰 陈岩 宋鸿武 张士宏 
单位:沈阳理工大学 中国科学院金属研究所 江西铜业技术研究院有限公司 
关键词:铜镍硅合金 时效处理 冷轧 显微组织 力学性能 电导率 
分类号:TG146.1
出版年,卷(期):页码:2022,47(8):215-223
摘要:

 利用真空熔炼炉制备得到Cu-2.36Ni-0.60Si-0.13Mg-0.059Zn合金铸锭,采用热锻开坯、再进行热轧得到厚度为12 mm的合金板材,然后经过多道次冷轧得到厚度为1 mm的合金带材,并对其进行不同条件下的时效处理。采用光学金相(OM)、电子背散射衍射(EBSD)、力学性能测试和电学性能测试等手段对合金带材冷轧及时效过程进行微观组织、力学性能和电导率测试。结果表明:随着轧制变形量的不断增加,初始组织向纤维状转变,晶粒破碎,合金硬度升高,当轧制变形量为90%时,显微硬度可达203.8 HV;冷轧板材经过450 ℃保温6 h时效处理后,可获得较好的综合性能(显微硬度达到281.4 HV,电导率达到46.4%IACS);随着时效温度的升高,第二相的尺寸明显增大,由9.0 nm增大至24.9 nm,且时效处理后基体高斯(Goss)和Z形织构转变为旋转立方(R-cube)和高斯(Goss)织构。

 Cu-2.36Ni-0.60Si-0.13Mg-0.059Zn alloy ingot was prepared by vacuum melting furnace, and the alloy plate with the thickness of 12 mm was obtained by using hot forging to cogging and then hot rolling. Then, the alloy strip with the thickness of 1 mm was obtained by multi-pass cold rolling, and the aging treatments under different conditions were conducted. Furthermore, the microstructure, mechanical properties and electrical conductivity of the alloy strip during cold rolling and aging processes were tested by optical metallography (OM), electron backscatter diffraction (EBSD), mechanical property test and electrical property test. The results show that with the continuous increasing of rolling deformation amount, the initial microstructure changes to fibrous, the grains are broken, and the hardness of alloy is improved. When the rolling deformation amount is 90%, the microhardness reaches 203.8 HV. After aging treatment at 450 ℃ for 6 h, the better comprehensive properties with the microhardness of 281.4 HV and the electrical conductivity of 46.4% IACS for the cold rolled plate are obtained. With the increasing of aging temperature, the size of the second phase increases obviously from 9.0 nm to 24.9 nm, and the matrix Goss and Z-shaped textures are transformed into R-cube and Goss textures after aging treatment.

基金项目:
中国科学院重点部署项目(ZDRW-CN-2021-3)
作者简介:
作者简介:刘劲松(1971-),男,博士,副教授,E-mail:jsliu@imr.ac.cn;通信作者:王松伟(1990-),男,博士,助理研究员,E-mail:swwang16b@imr.ac.cn
参考文献:

 [1]Kim Y G, Seong T Y, Han J H, et al. Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy [J]. Journal of Materials Science, 1986, 214: 1357-1362.


[2]Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging [J]. Journal of Alloys and Compounds, 2014, 614: 189-195.


[3]于朝清. 引线框架用高强高导铜合金材料 [J]. 电工材料, 2005, (2): 33-37.


Yu C Q. The summary of copper alloy with high-strength and high-conductivity [J]. Electrical Materials Alloy, 2005, (2): 33-37.


[4]王晓娟. 铜合金引线框架材料的加工与性能研究 [D]. 赣州: 江西理工大学, 2005.


Wang X J. Study on Processing and Properties of Copper Alloy Lead Frame Material [D]. Ganzhou: Jiangxi University of Science and Technology, 2005.


[5]潘志勇, 汪明朴, 李周, . 超高强度Cu-Ni-Si合金的研究进展 [J]. 金属热处理, 2007, 32(7): 55-59.


Pan Z Y, Wang M P, Li Z, et al. Process of study on super high strength Cu-Ni-Si alloy [J]. Heat Treatment of Metals, 2007, 32(7): 55-59.


[6]赵冬梅, 董企铭, 刘平, . 铜合金引线框架材料的发展 [J]. 材料导报, 2001, 15(5): 18-20.


Zhao D M, Dong Q M, Liu P, et al. Development of copper alloy for leadframe [J]. Materials Review, 2001, 15(5): 18-20.


[7]German R MHens K FJohnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. International Journal of Powder Metallurgy, 1994, 30(2): 205-215.


[8]汪黎, 孙扬善, 薛烽. 我国引线框架铜基材料的市场需求与国产化策略 [J]. 世界有色金属, 2004, (8): 1-2.


Wang L, Sun Y S, Xue F. Market demand of copper-base material for lead wire frame in Chinese mainland and its strategy of import substitution through local production [J]. World Nonferrous Metals, 2004, (8): 1-2.


[9]Huang J Z, Xiao Z, Dai J, et al. Microstructure and properties of a novel Cu-Ni-Co-Si-Mg alloy with super-high strength and conductivity [J]. Materials Science and Engineering, 2019,(28):754-763.


[10]Wang J F, Jia S G, Chen S H, et al. Effect of aging precipitation on properties of Cu-Ni-Si-Mg alloy [J]. Advanced Materials Research, 2011,197-198: 1315-1320.


[11]黄国杰, 肖翔鹏, 马吉苗, . 固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响 [J]. 材料热处理学报, 2014, 35(8): 58-63.


Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy [J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 58-63.


[12]Kim H G, Lee T W, Kim S M, et al. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys [J]. Metals and Materials International, 2013, 19(1): 61-65.


[13]李伟, 刘平, 马凤仓, . 时效与冷变形对Cu-Ni-Si合金微观组织和性能的影响 [J]. 稀有金属, 2011, 35(3): 330-335.


Li W, Liu P, Ma F C, et al. Effect of aging and cold deformation on microstructure and properties for Cu-Ni-Si alloy [J]. Chinese Journal Rare Matals, 2011, 35(3): 330-335.


[14]Wang H S, Chen H G, Gu J W, et al. Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu-Ni-Si-Cr alloy [J]. Materials Science & Engineering: A, 2014, 619: 221-227.


[15]Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of Cu-Ni-Si alloys [J]. Journal of Alloys and Compounds, 2017, 696: 201-212.


[16]Gholami M, Altenberger I, Vesely J, et al. Effect of severe plastic deformation on transformation kinetics of precipitates in CuNi3Si1Mg [J]. Materials Science & Engineering: A, 2016, 676: 156-164.


[17]Lei J G, Huang J L, Liu P, et al. The effects of aging precipitation on the recrystallization of Cu-Ni-Si-Cr alloy [J]. Journal of Wuhan University of Technology, 2005, 20(1): 21-24.


[18]He W, Chen Y L, Zhao Y N, et al. Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu-Ni-Si-Co alloy [J]. Materials Science & Engineering: A, 2021, 814: 141-239.


 


[19]Srivastava V C, Schneider A, Uhlenwinkel V, et al. Effects of thermomechanical treatment on spray formed Cu-Ni-Si alloy [J]. Materials Science and Technology, 2004, 7(20): 839-848.


[20]Lee E Y, Han S Z, Euh K J, et al. Effect of Ti addition on tensile properties of Cu-Ni-Si alloys [J]. Metals and Materials International, 2011,(4): 569-576.


[21]Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. Journal of Materials Science, 1994,29: 218-226.


[22]Jia Y L, Wang M P, Chen C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy [J]. Journal of Alloys and Compounds, 2013, 557: 147-151.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9