网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强塑积汽车用中锰钢的热变形与组织性能
英文标题:Hot deformation and microstructure properties on automotive medium manganese steel with high strength-ductility balance
作者:苏张磊 李玮 罗志敏 
单位:河南农业职业学院 郑州大学 
关键词:中锰钢 热压缩变形 奥氏体逆相变退火 显微组织 力学性能 
分类号:TG142.1
出版年,卷(期):页码:2022,47(8):241-248
摘要:

 采用扫描电镜、透射电镜和拉伸试验机等手段,研究了热压缩变形量(0%、25%、50%和75%)对奥氏体逆相变退火态汽车用中锰钢的显微组织和力学性能的影响。结果表明:随着热压缩变形量从0%增加至75%,退火态中锰钢中马氏体板条的平均宽度从0.96 μm减小至0.34 μm、碳化物的平均粒径从Φ38 nm减小至Φ20 nm,且碳化物的体积分数也随着热压缩变形量的增加而增大。经过热压缩变形处理的退火态中锰钢中的奥氏体含量、断后伸长率和强塑积均高于未经过热压缩变形的试样,且当热压缩变形量为50%和75%时,退火态中锰钢的强塑积均高于33.4 GPa·%,符合第3代汽车钢对强塑积≥30 GPa·%的要求,这主要与热压缩变形后退火态中锰钢中板条马氏体较为细小、碳化物尺寸小且体积分数较大等有关。

 The influences of hot compression deformation amounts(0%, 25%, 50% and 75%) on the microstructure and mechanical properties of austenitic reverse transformation annealed automotive medium manganese steel were studied by means of scanning electron microscope, transmission electron microscope and tensile testing machine. The results show that with the increasing of hot compression deformation amount from 0% to 75%, the average width of martensitic lath in annealed medium manganese steel decreases from 0.96 μm to 0.34 μm, the average particle diameter of carbide decreases from Φ38 nm to Φ20 nm, and the volume fraction of carbide increases with the increasing of hot compression deformation amounts. The austenite content, elongation and strength-ductility balance of annealed medium manganese steel after hot compression deformation treatment are higher than those of samples without hot compression deformation. When the hot compression deformation amount is 50% and 75%, the strength-ductility balance of annealed medium manganese steel is higher than 33.4 GPa·%, which meets the requirements of the third generation automotive steel for the strength-ductility balance ≥30 GPa·%. It is mainly related to the fine lath martensite and small size and large volume fraction of carbide in annealed medium manganese steel after hot compression deformation.

基金项目:
郑州市科技攻关项目(173SGYG2612232);国家自然科学基金资助项目(21908217)
作者简介:
作者简介:苏张磊(1981-),男,硕士,讲师,E-mail:suzhanglei@hnca.edu.cn
参考文献:

 [1]白韶斌, 牛伟强,肖文涛,. 中锰钢的研究进展及未来研究展望[J].热加工工艺,2022, 51(14):1-9.


Bai S B, Niu W Q, Xiao W T, et al Research progress and future research prospect of medium Mn steels[J]. Hot Working Technology, 2022, 51(14):1-9.


[2]Suh D W, Kim S J . Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scripta Materialia, 2017, 126: 63-67.


[3]赵征志, 陈伟健, 高鹏飞,. 先进高强度汽车用钢研究进展及展望[J].钢铁研究学报,2020, 32(12): 1059-1076.


Zhao Z Z,Chen W J, Gao P F, et al. Progress and prospective of advanced high strength automotive steel [J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076.


[4]宋仁伯, 霍巍丰,周乃鹏,. Fe-Mn-Al-C系中锰钢的研究现状与发展前景[J].工程科学学报, 2020,42(7):814-828.


Song R B, Huo W F, Zhou N P, et al. Research progress and prospect of Fe-Mn-Al-C medium Mn steels[J]. Chinese Journal of Engineering, 2020,42(7): 814-828.


[5]胡斌, 屠鑫, 王玉,. 中锰钢塑性失稳现象的研究进展及未来研究展望[J].工程科学学报, 2020, 42(1): 48-59.


Hu B, Tu X, Wang Y, et al. Research progress and future research prospects on the plastic instability of medium-Mn steels: A review[J]. Chinese Journal of Engineering, 2020, 42 (1): 48-59.


[6]吴存慧, 刘龙飞,蔡志辉. 轧制工艺对低碳中锰钢微观组织和力学行为的影响[J].精密成形工程, 2021,13(3):89-96.


Wu C H, Liu L F, Cai Z H. Effect of rolling process on microstructure and mechanical behavior of low carbon medium manganese steel [J]. Journal of Netshape Forming Engineering, 2021,13(3): 89-96.


[7]Steineder K, Krizan D, Schneider R, et al. On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels[J]. Acta Materialia, 2017, 139: 39-50.


[8]Li X, Song R B, Zhou N P, et al. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing[J]. Scripta Materialia, 2018, 154:30-33.


[9]Niu G, Wu H B, Zhang D, et al. Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility[J]. Materials Science & Engineering A, 2018, 725: 187-195.


[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2021, Metallic Materials—Tensile testing—Part 1: Method of test at room temperature[S].


[11]Zhang Y, Ding H, Zhu H K, et al. Influence of microstructural morphology on the continuous/discontinuous yielding behavior in a medium manganese steel[J]. Materials Science & Engineering A, 2021, 824:141746-141752.


[12]邵成伟, 王俊涛,赵晓丽,.两相区退火处理含铝中锰钢的组织和力学性能[J].钢铁, 2020, 55(5): 87-93.


Shao C W, Wang J T, Zhao X L, et al. Microstructure and mechanical properties of intercritically annealed Al-contain medium Mn steel [J]. Iron and Steel, 2020, 55 (5): 87-93.


[13]Hu J, Zhang J M, Sun G S, et al. High strength and ductility combination in nano-/ultrafine -grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing[J]. Journal of Materials Science, 2019,54: 6565-6578.


[14]Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe-Mn-Al-C steel[J]. Scripta Materialia, 2014, 71(2): 5-8.


[15]王存宇, 常颖,周峰峦,. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J].金属学报, 2020,56(4): 400-410.


Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020,56 (4): 400-410.


[16]Zou Y M,Ding H,Tang Z Y. Effect of carbon content on deformation behavior and partitioning of manganese in medium-Mn steels[J]. Metals, 2021, 11(4): 667.


[17]乔书杰, 张晓莹.预应变对汽车双相钢材料成形性的影响[J].锻压技术,2020, 45(11): 181-186.


Qiao S J, Zhang X Y. Effect of pre-strain on formability of dual-phase steel material for automobile[J]. Forging & Stamping Technology, 2020, 45 (11): 181-186.


[18]张楠, 李岩, 定巍. 0.2C-5Mn-0.5Si-2.5Al中锰钢临界退火后的微观组织及力学性能[J].金属热处理, 2021,46(7): 37-42.


Zhang N, Li Y, Ding W. Microstructure and mechanical properties of 0.2C-5Mn-0.5Si-2.5Al medium manganese steel after critical annealing[J]. Heat Treatment of Metals, 2021,46 (7): 37-42.


[19]Li T L, Yan S, Liu X H. Enhancement austenite content in medium-Mn steel by introducing cold-rolled deformation and inhibiting subsequent recrystallization[J]. Materials Letters, 2021, 301: 130249-130255.


[20]Hu B, He B B, Cheng G J, et al. Super-high-strength and formable medium Mn steel manufactured by warm rolling process[J]. Acta Materialia, 2019, 174: 131-141.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9