网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5052铝合金薄型封板冲压缺陷仿真分析
英文标题:Simulation analysis on stamping defects for 5052 aluminum alloy thin sealing plate
作者:吕志敏 江豪 
单位:1.濮阳职业技术学院 机电与汽车工程学院 2.郑州轻工业大学 电气信息工程学院 
关键词:5052铝合金 材料模型 拉伸试验 田口试验 最大减薄率 最大增厚率 
分类号:TG386
出版年,卷(期):页码:2022,47(9):99-104
摘要:

 针对某5052铝合金薄型封板开裂严重、报废率高的问题,基于计算机模拟技术,对其冲压成形过程进行了数值仿真。首先,通过单向拉伸试验获得了5052铝合金的力学性能参数及应力-应变曲线,并在Deform软件中建立了冲压材料模型。其次,通过建立冲压仿真模型,结合田口试验设计,研究了冲压速度、摩擦因数、压边力以及入模圆角半径等冲压参数对薄型封板成形质量的影响,并采用线性加权法建立了关于最大减薄率与最大增厚率的评价函数模型,利用望小特性模型对冲压参数进行了寻优。优化结果表明,封板的最大减薄率及最大增厚率得到了明显改善,降低了开裂和起皱的风险,并通过冲压试验进行了验证,原工艺下出现的开裂缺陷得到消除,封板质量达到设计需求。

 For the serious cracking and high scrap rate of a 5052 aluminum alloy thin sealing plate, based on computer simulation technology, its stamping process was simulated numerically. Firstly, the mechanical property parameters and stress-strain curves of  5052 aluminum alloy were obtained by unidirectional tensile test, and the stamping material model was established by software Deform. Secondly, through the establishment of stamping simulation model, and combined with taguchi test design, the influences of stamping parameters such as stamping speed, friction coeffient, blank holder force and die fillet radius on the forming quality of thin sealing plate were studied, the evaluation function model of the maximum thinning rate and the maximum thickening rate was established by the linear weighted method, and the stamping parameters were optimized by small feature model. The optimization results show that the maximum thinning rate and the maximum thickening rate of sealing plate are improved obviously, the risk of cracking and wrinkling is reduced.And the verification was conducted by the stamping test. The cracking defects in the original process are eliminated, and the quality of sealing plate meets the design requirements.

 

基金项目:
河南省2020年重点研发与推广专项(科技公关)项目(212102210081)
作者简介:
吕志敏(1978-),男,硕士,讲师 E-mail:lvzm1978@163.com
参考文献:

 [1]李一凡, 黄海.铝合金游艇外板冲压成形缺陷分析及优化设计[J].船舶工程,2021,43(1):102-107.


 


Li Y F,Huang H. Defect analysis and optimization design of stamping forming of aluminum alloy yacht outer panel[J].Ship Engineering,2021,43(1):102-107.


 


[2]王涛, 孙占军,武彩峰.5182铝合金前围板冲压工艺研究[J].汽车实用技术,2020(8):178-180193.


 


Wang T,Sun Z J,Wu C F.Research on stamping process of 5182 aluminum alloy dash panel[J].Automobile Applied Technology,2020(8):178-180193.


 


[3]曹玮, 纪凯志,胡志,.2A12航空铝合金在海洋环境中腐蚀行为仿真研究[J].特种铸造及有色合金,2020,40(11):1218-1223.


 


Cao W,Ji K Z,Hu Z,et al.Corrosion behaviour simulation of 2A12 aluminum alloy in marine environment[J].Special-cast and Non-ferrous Alloys,2020,40(11):1218-1223.


 


[4]余海燕, 吴航宇,汪林.先进高强钢板冲压成形后的时效回弹行为[J].塑性工程学报,2021,28(6):2-7.


 


Yu H Y,Wu H Y,Wang L.Time-dependent springback behavior of advanced high strength steel sheet after stamping forming[J].Journal of Plasticity Engineering,2021,28(6):2-7.


 


[5]韩龙帅, 王刚,郑学斌,.基于Autoform的门内板冲压仿真分析[J].塑性工程学报,2021,28(4):82-88.


Han L S,Wang G,Zheng X B,et al.Simulation analysis of door inner panel stamping based on Autoform[J].Journal of Plasticity Engineering,2021,28(4):82-88.


 


[6]王猛, 李森,刘庆,.浅谈车身铝合金板冲压工艺和模具注意事项[J].汽车工艺与材料,2019(8):31-35.


 


Wang M,Li S,Liu Q,et al.Discussion on stamping process and die precautions of body aluminum alloy plate[J].Automobile Technology & Material,2019(8):31-35.


 


[7]李锐, 孟亮.基于Deform和正交试验的汽车轮毂盖板冲压工艺参数优化[J].制造技术与机床,2021(8):147-150.


 


Li R,Meng L.Optimization of stamping process parameters for automobile hub cover plate based on deform and orthogonal test[J].Manufacturing Technology & Machine Tool,2021(8):147-150.


 


[8]李超, 黄珍媛,魏婉珠,.3104铝合金超薄板冲压成形性能试验研究[J].轻合金加工技术,2020,48(10):48-5060.


 


Li C,Huang Z Y,Wei W Z,et al.Experimental study on stamping formability of ultra thin sheet of 3104 aluminum alloy[J].Light Alloy Fabrication Technology,2020,48(10):48-5060.


 


[9]陈龙, 郭福林,王炯,.基于数值模拟的中厚板零件冲压工艺研究[J].模具技术,2012(5):6-10.


 


Chen L,Guo F L,Wang J,et al.Investigation on stamping process of medium plate part based on numerical simulation[J].Die and Mould Technology,2012(5):6-10.


 


[10]GB/T 228.12021,金属材料拉伸试验第一部分:室温试验方法[S].


 


GB/T 228.12021,Metallic materialsTensile testingPart 1:Method of test at room temperature[S].


 


[11]邱超斌, 张猛,郎利辉,.基于神经网络遗传算法的深腔型零件拉深工艺参数优化[J].精密成形工程,2021,13(5):173-179.


 


Qiu C B,Zhang M,Lang L H,et al.Parameter optimization of deep drawing process for deep cavity parts based on neural network genetic algorithm[J].Journal of Netshape Forming Engineering,2021,13(5):173-179.


 


[12]胡郁, 孔建.基于响应面法的弧形铝合金锻件锻造工艺的多目标优化[J].热加工工艺,2015,44(9):131-134.


 


Hu Y,Kong J.Multi-objective optimization of forging process for arc shaped aluminum alloy forgings based on response surface method[J].Hot Working Technology,2015,44(9):131-134.


 


[13]高正凯, 李大为.基于田口法的AZ61A镁合金热挤压圆管成型工艺参数优化[J]. 佳木斯大学学报:自然科学版, 2019, 37(3): 435-436477.


 


 


Gao Z K,Li D W.Process parameters optimization of AZ61A magnesium alloy hot extrusion pipe based on taguchi method[J].Journal of Jiamusi UniversityNatural Science Edition,2019,37(3):435-436477.


服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9