网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
某轿车底盘车架弯管弯制过程的起皱缺陷分析与优化
英文标题:Analysis and optimization on wrinkling defect in bending process for a car chassis frame bending pipe
作者:胡晓 尹晶晶 汪创伟 王飞龙 
单位:攀钢集团研究院有限公司 钒钛资源综合利用国家重点实验室 
关键词:底盘车架 酸洗板 弯管 起皱 SIGMA分析 
分类号:TG386.43
出版年,卷(期):页码:2022,47(9):112-117
摘要:

 针对某轿车底盘车架弯管弯制过程出现的起皱问题,基于Autoform软件SIGMA模块分析了材料参数对起皱缺陷的影响,确定了材料方面对起皱缺陷影响比较敏感的参数,进而指导材料改进。主要分析了S355MC钢酸洗板材料的屈服强度、抗拉强度、r90和摩擦因数对起皱缺陷的影响。仿真结果显示:屈服强度和抗拉强度对弯管起皱缺陷的影响较大,摩擦因数和r90对起皱缺陷几乎没有影响,降低屈服强度和屈强比对控制起皱缺陷有利。通过加入适量的Cr和调整卷取温度等工艺措施,有效地降低了S355MC钢酸洗板材料的屈服强度和屈强比,平均屈服强度为374.1 MPa,平均屈强比在0.73以下。通过降低材料的屈服强度和屈强比,成功地解决了弯管的起皱问题。

 Aiming at the wrinkling problem in the bending process of a car chassis frame bending pipebased on SIGMA module of Autoform software, the influence of material parameters on wrinkling defect was analyzed, and the parameters of material which were sensitive to wrinkling defect were determined, so as to guide the material improvement. The influence of yield strength, tensile strength, r90  and friction factor on the wrinkling defect for S355MC steel pickling sheet material was analyzed. The simulation results show that the yield strength and tensile strength have a great influence on the wrinkling defect of bending pipe, while the friction factor and r90  have almost no influence on the wrinkling defect. It is beneficial to reduce the yield strength and the yield strength ratio to control the wrinkling defect. By adding an appropriate amount of Cr and adjusting the coiling temperature, the yield strength and the yield strength ratio of S355MC steel pickling sheet material are effectively reduced. The average yield strength is 374.1 MPa, and the average yield strength ratio is below 0.73. By reducing the yield strength and the yield strength ratio of the material, the wrinkling problem of bending pipe is successfully solved.

基金项目:
作者简介:
胡晓(1990-),男,硕士,工程师 E-mail:hgdxiaohu@163.com
参考文献:

 [1]Hartl C. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2/3): 383-392.


 


[2]Manabe K I, Amino M. Effects of process parameters and material properties on deformation process in tube hydro-forming[J]. Journal of Materials Processing Technology, 2002, 123: 285-291.


 


[3]韩兆建. 金属薄壁管材充液弯曲工艺研究[D]. 秦皇岛:燕山大学, 2021.


 


Han Z J. Research on Liquid-filled Bending Process of Metal Thin-walled Pipes [D]. Qinhuangdao: Yanshan University, 2021.


 


[4]车移, 詹红, 屈俊岑, . 基于全量流动理论的管材弯曲过程失稳分析研究[J]. 精密成形工程, 2021, 13(3): 112-117.


 


Che Y, Zhan H, Qu J C, et al. Analysis on instability in tube bending process based on total theory of plasticity[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 112-117.


 


[5]曹国富. 弯管异常起皱的成因分析[J]. 焊管, 2012, 35(11): 40-44.


 


Cao G F. Analysis on reasons caused by bend abnormal wrinkle[J]. Welded Pipe and Tube, 2012, 35(11): 40-44.


 


 


[6]戴莉, 方军, 程璐, . 材料参数对高强不锈钢管数控绕弯成形失稳起皱的影响[J]. 精密成形工程, 2017, 9(1): 91-95.


 


Dai L, Fang J, Cheng L, et al. Effects of material parameters on wrinkling of high-strength stainless steel tube in numerical control rotary draw bending[J]. Journal of Netshape Forming Engineering, 2017, 9(1): 91-95.


 


[7]林艳, 杨合, 李恒, . 薄壁管数控弯曲过程中失稳起皱的主要影响因素[J]. 航空学报, 2003, (5): 456-461.


 


Lin Y, Yang H, Li H, et al. Influences of forming parameters on wrinkling in NC thin-walled tube bending[J]. Acta Aeronautica et Astronautica Sinica, 2003, (5): 456-461.


 


[8]方军. 21-6-9高强不锈钢管数控绕弯成形规律研究[D]. 南京:南京航空航天大学, 2015.


 


Fang J. Study on Forming Rules of 21-6-9 High-strength Stainless Steel Tubes in NC Rotary Draw Bending Process[D]. NanjingNanjing University of Aeronautics and Astronautics, 2015.


 


[9]李恒. 薄壁管数控弯曲成形过程失稳起皱及成形极限的研究[D].西安:西北工业大学, 2004.


 


Li H. Research on Wrinkling and Forming Limit of NC Bending Process of Thin-walled Tube[D]. Xian: Northwestern Polytechnical University, 2004.


 


[10]张博凡, 王增强. Autoform Sigma模块在汽车后盖内板模具调试中的应用[J]. 模具工业, 2014, 40(7): 40-42.


 


Zhang B F, Wang Z Q. Application of Autoform Sigma in the tryout of die for automotive decklid inner plate[J]. Die & Mould Industry, 2014, 40(7): 40-42.


 


[11]Fang J, Lu S Q, Wang K L, et al. Three-dimensional finite element model of high strength 21-6-9 stainless steel tube in rotary draw bending and its application[J]. Indian Journal of Engineering and Materials Sciences, 2015, 22(2): 142-151.


 


[12]涂小文. AutoForm原理技巧与战例实用手册[M]. 武汉: 湖北科学技术出版社, 2013.


 


Tu X W. Practical Manual of AutoForm Principles, Skills and Examples[M]. Wuhan: Hubei Science & Technology Press, 2013.


 


[13]雍岐龙, 马鸣图, 吴宝镕. 微合金钢——物理和力学冶金[M]. 北京: 机械工业出版社, 1989.


 


Yong Q L, Ma M T, Wu B R. Microalloyed SteelPhysical and Mechanical Metallurgy[M]. Beijing: China Machine Press, 1989.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9