网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同B含量下钴基合金激光熔覆层组织与性能特征
英文标题:Microstructure and performance characteristics on laser cladding layer for Co-based alloy with different B contents
作者:张志彬 舒凤远 王慧鹏 朱鹏华 
单位:1.军事科学院国防科技创新研究院 2.中山大学 化学工程与技术学院 3.江西理工大学 机电工程学院 
关键词:激光熔覆 钴基合金粉 B含量 微观组织 摩擦磨损 
分类号:TG139;TH16
出版年,卷(期):页码:2022,47(9):218-223
摘要:

 为了提高H13模具钢的表面性能,在其表面激光熔覆一层Co基合金粉,分析了熔覆层的微观组织结构和力学性能。结果表明:熔覆层组织主要由Cr2Ni3Fe2B、γ-Co Co3B等成分构成,随着B含量的升高,FeCrCo元素的晶化相减少,B化合物增多;从熔覆层底部至顶部,B化合物增多。合金粉末中B含量为7%19%的试样的熔覆层表面具有优良的耐磨性,在相同磨损条件下,磨损率低,磨损类型主要为磨粒磨损。B含量为11%15%的试样的熔覆层磨损严重,磨损类型主要为粘着磨损+剥落磨损+氧化磨损,熔覆层出现大量气孔,使得耐磨性能降低,摩擦因数增大,磨损失重增大。B含量为19%时,熔覆层具有大量裂纹。综合考虑,B含量为7%时,熔覆层的组织与性能最佳。

 To improve the surface properties of H13 die steel, a layer of Co-based alloy powder was clad on its surface by laser, and the microstructure and mechanical properties of the cladding layer were analyzed. The results show that the microstructure of the cladding layer is mainly composed of Cr2Ni3, Fe2B, γ-Co and Co3B components. With the increasing of B content the crystalline phases of Fe, Cr and Co elements decrease, B compound increases. And from the bottom to the top of the cladding layer, B compound increases. The surfaces of the cladding layer for the samples with the B content of 7% and 19% in the alloy powder have excellent wear resistance property. Under the same wear conditions, the wear rate is low, and the wear type is mainly abrasive wear. However, the cladding layers of the samples with the B content of 11% and 15% are severely worn, and the wear types are mainly adhesive wear + peeling wear + oxidation wear. Furthermore, a large number of pores appear in the cladding layer, which reduce the wear resistance property, increase the friction factor, and increase the wear loss. When the B content is 19%, the cladding layer has a lot of cracks. Thus, comprehensive consideration, when the B content is 7%, the microstructure and performance of the cladding layer are the best.

基金项目:
国家自然科学基金青年基金资助项目(51905126);北京市自然科学基金资助项目(2212055)
作者简介:
张志彬(1982-),男,博士,副研究员 E-mail:eacbia@163.com 通信作者:王慧鹏(1983-),男,博士,讲师 E-mail:wanghuipeng1983@126.com
参考文献:

 [1]Ryan D, Crawford C, Jim F, et al. Remanufacture of hot forging dies by LMD-p using a cobalt based hard-facing alloy[J]. BHM Berg-und Hüttenmnnische Monatshefte, 2021(prepublish).Doi:10.1007/S00501-021-01108-Z.


 


 


[2]陈再枝,蓝德年. 模具钢手册[M]. 北京: 冶金工业出版社,2002.


 


Chen Z Z, Lan D N. Handbook of Die Steel [M]. Beijing: Metallurgical Industry Press, 2002.


 


[3]姚迪,李晶,何新波,等. 国内热作模具材料发展现状[J]. 工程技术研究,2014,(4): 48-50.


 


Yao D, Li J, He X B, et al. Development situation of domestic hot working dies material[J]. Engineering and Technological Research2014(4):48-50.


 


[4]刘立君,刘大宇,崔元彪,等. 模具磨损表面激光熔覆修复层的数值模拟技术[J]. 电焊机,202050(7): 46-52,149.


 


Liu L J, Liu D Y, Cui Y B, et al. Numerical sim ulation technology of laser cladding repair layer on wear surface of die[J]. Electric Welding Machine, 2020, 50(7):46-52,149.


 


 


[5]Fu Y LGuo N, Zhou C, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Tech., 2021289 (prepublish).Doi:10.1016/j.jmatprotec.2020.116949.


 


[6]Heigel J, Michaleris P, Palmer T. In situ monitoring and characterization of distortion during laser cladding of Inconel 625[J]. Journal of Materials Processing Technology, 2015, 220:135-145.


 


[7]Jiang W, Li Y Y, Guo F Let al. Optimization of laser repair parameters for precracked 304 stainless steel components with nanocomposites addition[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020234(9):1280-1288.


 


[8]封亚明,何柏林,江明明,等. 表面技术在模具制造和修复中的应用[J]. 热加工工艺,201847(4): 30-34.


 


Feng Y M, He B L, Jiang M M, et al. Application of surface technology in manufacture and repair of die[J]. Hot Working Technology, 2018, 47(4):30-34.


 


[9]李绍宏,何文超,张旭,等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁,202156(3): 13-22,40.


 


Li S H, He W C, Zhang X, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron and Steel, 2021, 56(3):13-22,40.


 


[10]张津超,石世宏,龚燕琪,等. 激光熔覆技术研究进展[J]. 表面技术,202049(10): 1-11.


 


Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10):1-11.


 


[11]尹燕,潘存良,赵超,等. 激光熔覆高铬铁基合金的组织形成机制及对显微硬度的影响[J]. 焊接学报,2019, 40(7): 114-120,166.


 


Yin Y, Pan C L, Zhao C, et al. Formation mechanism of microstructure of laser cladding high chromium Fe-based alloy and its effect on microhardness[J]. Transactions of the China Welding Institution, 2019, 40(7):114-120,166.


 


[12]Su Y P, Yue T M. Microstructures of the bonding area in laser cladded Zr-based amorphous alloy coating on magnesium[J]. Materials Today Communications2020, 25(prepublish).Doi:10.1016/j.mtcomm.2020.101715.


 


[13]Zhao J, Gao Q W, Wang H Q, et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding[J]. Journal of Alloys and Compounds2019785:846-854.


 


[14]崔陆军,于计划,曹衍龙,等. 多道搭接钴基合金激光熔覆层的组织与性能[J]. 金属热处理,202045(3): 41-45.


 


Cui L J, Yu J H, Cao Y L, et al. Microstructure and properties of multi-track joint Co-based alloy laser clad layer[J]. Heat Treatment of Metals, 2020, 45(3): 41 - 45.


 


[15]余廷,张子翔,饶锡新,等. 激光熔覆Stellite 6涂层的高温摩擦行为[J]. 激光与光电子学进展,201956(14): 184-190.


 


Yu T, Zhang Z X, Rang X X, et al. High-temperature wear behavior of laser-cladding Stellite 6 coating[J].Laser & Optoelectronics Progress, 2019, 56(14): 184-190.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9