[1]Ryan D, Crawford C, Jim F, et al. Remanufacture of hot forging dies by LMD-p using a cobalt based hard-facing alloy[J]. BHM Berg-und Hüttenmnnische Monatshefte, 2021(prepublish).Doi:10.1007/S00501-021-01108-Z.
[2]陈再枝,蓝德年. 模具钢手册[M]. 北京: 冶金工业出版社,2002.
Chen Z Z, Lan D N. Handbook of Die Steel [M]. Beijing: Metallurgical Industry Press, 2002.
[3]姚迪,李晶,何新波,等. 国内热作模具材料发展现状[J]. 工程技术研究,2014,(4): 48-50.
Yao D, Li J, He X B, et al. Development situation of domestic hot working dies material[J]. Engineering and Technological Research,2014,(4):48-50.
[4]刘立君,刘大宇,崔元彪,等. 模具磨损表面激光熔覆修复层的数值模拟技术[J]. 电焊机,2020,50(7): 46-52,149.
Liu L J, Liu D Y, Cui Y B, et al. Numerical sim ulation technology of laser cladding repair layer on wear surface of die[J]. Electric Welding Machine, 2020, 50(7):46-52,149.
[5]Fu Y L,Guo N, Zhou C, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Tech., 2021,289 (prepublish).Doi:10.1016/j.jmatprotec.2020.116949.
[6]Heigel J, Michaleris P, Palmer T. In situ monitoring and characterization of distortion during laser cladding of Inconel 625[J]. Journal of Materials Processing Technology, 2015, 220:135-145.
[7]Jiang W, Li Y Y, Guo F L,et al. Optimization of laser repair parameters for precracked 304 stainless steel components with nanocomposites addition[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2020,234(9):1280-1288.
[8]封亚明,何柏林,江明明,等. 表面技术在模具制造和修复中的应用[J]. 热加工工艺,2018,47(4): 30-34.
Feng Y M, He B L, Jiang M M, et al. Application of surface technology in manufacture and repair of die[J]. Hot Working Technology, 2018, 47(4):30-34.
[9]李绍宏,何文超,张旭,等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁,2021,56(3): 13-22,40.
Li S H, He W C, Zhang X, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron and Steel, 2021, 56(3):13-22,40.
[10]张津超,石世宏,龚燕琪,等. 激光熔覆技术研究进展[J]. 表面技术,2020,49(10): 1-11.
Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10):1-11.
[11]尹燕,潘存良,赵超,等. 激光熔覆高铬铁基合金的组织形成机制及对显微硬度的影响[J]. 焊接学报,2019, 40(7): 114-120,166.
Yin Y, Pan C L, Zhao C, et al. Formation mechanism of microstructure of laser cladding high chromium Fe-based alloy and its effect on microhardness[J]. Transactions of the China Welding Institution, 2019, 40(7):114-120,166.
[12]Su Y P, Yue T M. Microstructures of the bonding area in laser cladded Zr-based amorphous alloy coating on magnesium[J]. Materials Today Communications,2020, 25(prepublish).Doi:10.1016/j.mtcomm.2020.101715.
[13]Zhao J, Gao Q W, Wang H Q, et al. Microstructure and mechanical properties of Co-based alloy coatings fabricated by laser cladding and plasma arc spray welding[J]. Journal of Alloys and Compounds,2019,785:846-854.
[14]崔陆军,于计划,曹衍龙,等. 多道搭接钴基合金激光熔覆层的组织与性能[J]. 金属热处理,2020,45(3): 41-45.
Cui L J, Yu J H, Cao Y L, et al. Microstructure and properties of multi-track joint Co-based alloy laser clad layer[J]. Heat Treatment of Metals, 2020, 45(3): 41 - 45.
[15]余廷,张子翔,饶锡新,等. 激光熔覆Stellite 6涂层的高温摩擦行为[J]. 激光与光电子学进展,2019,56(14): 184-190.
Yu T, Zhang Z X, Rang X X, et al. High-temperature wear behavior of laser-cladding Stellite 6 coating[J].Laser & Optoelectronics Progress, 2019, 56(14): 184-190.
|