[1]王庆敏,王忠民,刘应心.高层建筑用耐火钢研究与应用综述[J].宽厚板,2020,26(4):45-48.
Wang Q M, Wang Z M, Liu Y X. Review on research and application of fire resistant steel for high rise buildings [J]. Wide and Heavy Plate, 2020,26 (4): 45-48.
[2]詹放,林田子,阴树标,等.回火工艺对690 MPa级抗震耐火钢板组织和力学性能的影响[J].昆明理工大学学报,2020,45(5): 26-34.
Zhan F, Lin T Z, Yin S B, et al. Effect of tempering process on microstructure and mechanical properties of 690 MPa seismic refractory steel plate [J]. Journal of Kunming University of Science and Technology, 2020,45 (5): 26-34.
[3]Wan R C, Sun F, Zhang L T, et al. Effects of Mo on high-temperature strength of fire-resistant steel[J]. Materials & Design, 2012, 35: 335-341.
[4]詹放,林田子,阴树标,等.轧制工艺对高强抗震耐火钢板组织性能的影响[J].钢铁,2020,55(9):86-96.
Zhan F, Lin T Z, Yin S B, et al. Effect of rolling process on Microstructure and properties of high strength earthquake resistant refractory steel plate [J]. Iron and Steel, 2020,55 (9): 86-96.
[5]Chun W R, Feng S, Ting Z L, et al. Effect of Mo on the high-temperature yield strength of fire-resistant steels[J]. Journal of University of Science & Technology Beijing, 2013, 35(3):325-331.
[6]GB/T 228.2—2015, 金属材料 拉伸试验 第2部分:高温试验方法[S].
GB/T 228.2—2015, Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature[S].
[7]Wan R C, Sun F, Zhang L T, et al. Study on microstructure and properties of low-Mo fire-resistant steel[J]. Advanced Materials Research, 2011, 168-170:1792-1795.
[8]Liu M, Hou H X, Zhang Z, et al. Experiment research on 345MPa grade economic fire-resistant steel[J]. Heat Treatment of Metals, 2011, 36(10):6-10.
[9]桑晨,王红鸿,崔强,等. 微观组织对Q460高强耐火钢高温屈服强度的影响[J].武汉科技大学学报,2021,44(1):1-6.
Sang C, Wang H H, Cui Q, et al. Effect of microstructure on high temperature yield strength of Q460 high strength refractory steel [J]. Journal of Wuhan University of Science and Technology, 2021,44 (1): 1-6.
[10]刘福明,薛礼,刘春明. 变形量与变形温度对微合金化耐火钢中针状铁素体形成的影响[J]. 沈阳大学学报, 2016, 28(5): 351-356.
Liu F M, Xue L, Liu C M. Effect of deformation amount and deformation temperature on formation of acicular ferrite in Microalloyed refractory steel [J]. Journal of Shenyang University, 2016, 28 (5): 351-356.
[11]刘庆春, 雍岐龙,郑之旺. 钒对耐火钢显微组织及高温性能的影响[J]. 钢铁,2016,51(7):76-80.
Liu Q C, Yong Q L, Zheng Z W. Effect of vanadium on microstructure and high temperature properties of refractory steel [J]. Iron and Steel, 2016,51 (7): 76-80.
[12]陈林恒,王文涛,李昭东,等. Nb-V微合金化低钼型Q345耐火钢的开发[J].钢铁,2020,55(11):91-102.
Chen L H, Wang W T, Li Z D, et al. Development of Nb-V microalloyed low Mo Q345 refractory steel [J]. Iron and Steel, 2020,55 (11): 91-102.
[13]张正延, 孙新军, 李昭东,等. 纳米级碳化物及小角界面密度对Fe-C-Mo-M(M=Nb、V或Ti)系钢耐火性的影响[J]. 材料研究学报, 2015,29(4):269-276.
Zhang Z Y, Sun X J, Li Z D, et al. Effect of nano carbides and small angle interface density on fire resistance of Fe-C-Mo-M (M=Nb, V or Ti) steel [J]. Journal of Materials Research, 2015,29 (4): 269-276.
[14]Sun Y . Development of a fire resistant low alloy steel for construction[J]. Advanced Materials Research, 2012, 535-537:4-9.
[15]Ding H, Li L, Xiao Y Z, et al. Development of a fire resistant high strength low alloy steel for construction[J]. Materials Science Forum, 2003, 426-432:1487-1492.
[16]Panigrahi B K. Microstructures and properties of low-alloy fire resistant steel[J]. Bulletin of Materials Science, 2006, 29(1): 59-66.
|