网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型2A14铝合金筒形壳段细晶制造工艺
英文标题:Fine grain manufacturing technology on large 2A14 aluminum alloy cylindrical shell section
作者:姚梦 付敏敏 石泽民 张文学 周世杰 
单位:首都航天机械有限公司 天津航天长征技术装备有限公司 
关键词:2A14铝合金 筒形壳段 多向锻造 形变热处理 细晶 
分类号:TG319;TG339
出版年,卷(期):页码:2022,47(10):42-47
摘要:

针对我国某新一代武器型号中直径为Φ2000 mm、高度为800 mm的大型2A14铝合金筒形壳段,采用常规制造工艺的产品存在性能不达标且各向异性明显、显微组织粗大且存在局部微观缺陷、性能均匀性差等问题,提出一种细晶制造工艺,即:对铸锭进行七镦六拔改锻,通过高温大变形来消除铸态组织、充分破碎残余结晶相;将环坯在280~250 ℃下温轧,有效地细化晶粒尺寸、减小各向异性;再结合“固溶+冷胀形+时效”的形变热处理工艺,能够制造出组织均匀、晶粒细小、性能优异的大型2A14铝合金筒形壳段产品。结果表明,采用细晶工艺

For the large-sized 2A14 aluminum alloy cylindrical shell section with the diameter of Φ2000 mm and the height of 800 mm in a new generation weapon model in China, the products manufactured by conventional manufacturing process have substandard performance and obvious anisotropy, coarse microstructure and local microscopic defects, poor performance uniformity and other problems. Therefore, a fine-grained manufacturing process was proposed, namely, the ingot was forged by upsetting seven times and drawing six times. Then, the as-cast structure was eliminated and the residual crystalline phase was fully broken by large deformation at high temperature, and the ring billet was rolled at 280-250 ℃ which refined grain size and reduced anisotropy effectively. Furthermore, combined with the deformation heat treatment process of “solution+cold bulging+aging”, the product of 2A14 aluminum alloy cylindrical shell section with uniform structure, fine grain and high performance was manufactured. The results show that the grain size of product manufactured by fine grain technology is 50~100 μm, the circumferential strength is 468 MPa,the circumferential elongation is 12.2%, the axial strength is 453 MPa,the axial elongation is 7%, the radial strength is 462 MPa,and the radial elongation is 8.7%, which fully meets the acceptance requirements.

基金项目:
天津市科技计划项目(18ZXCLGX00040)
作者简介:
姚梦(1990-),女,硕士,工程师,E-mail:ymmyhappylife@163.com
参考文献:

[1]刘浩, 张文学, 王恒强, . 大中型铝合金高筒薄壁环件整体轧制成形技术[J]. 航天制造技术, 2017, 2(1): 26-29.

Liu H, Zhang W X, Wang H Q, et al. Technology of large and medium thin aluminum alloy ring rolling[J]. Aerospace Manufacturing Technology, 2017, 2 (1): 26-29.

[2]刘浩, 付敏敏, 姚梦, . 航天大型铝合金环筒件制造技术现状与发展方向[J]. 中国航天, 2021, (7): 39-44.

Liu H, Fu M M, Yao M, et al. Present situation and development trend of manufacturing technology of large aluminum alloy ring and cylindrical parts [J]. Aerospace China, 2021, (7): 39-44.

[3]罗楚养, 张朋, 李伟东, . 高温复合材料在空空导弹上的应用研究[J]. 航空科学技术, 2017, 28(1): 19-24.

Luo C Y, Zhang P, Li W D, et al. Application research of high temperature composite on airborne missile [J]. Aeronautical Science & Technology, 2017, 28 (1): 19-24.

[4]Wang B X, Yi Y P, He H L, et al. Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 871:159459.

[5]Tong D L, Yi Y P, He H L, et al. Manufacturing large 2A14 aluminium alloy cylinders by a warm rolling technology[J]. Materials Science and Technology, 2020, 36(14): 1534-1546.

[6]李俊, 易幼平, 黄始全, . 双级固溶处理对2A14铝合金组织和力学性能的影响[J]. 热加工工艺, 2017, 46(4)207-211.

Li J, Yi Y P, Huang S Q, et al. Effects of two-stage solution on microstructure and mechanical properties of 2A14 aluminum alloy [J]. Hot Working Technology, 2017, 46 (4): 207-211.

[7]郜均虎, 王健, 卢雅琳, . 热处理工艺对2A14铝合金组织和性能的影响[J]. 热加工工艺, 2016, 45(20)232-235.

Gao J H, Wang J, Lu Y L, et al. Effect of heat treatment process on microstructure and properties of 2A14 aluminum alloy [J]. Hot Working Technology, 2016,45 (20): 232-235.

[8]付佳, 晋会锦, 吴素君, . 热处理对2A14铝合金组织和性能的影响[J]. 材料热处理学报, 2016, 37(1)189-194.

Fu J, Jin H J, Wu S J, et al. Effect of heat treatment on microstructure and properties of 2A14 aluminum alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37 (1): 189-194.

[9]童灯亮,易幼平,黄始全,等. 变形温度对 2A14 铝合金组织与力学性能的影响[J]. 材料导报, 2020, 34(6): 100-104.

Tong D L, Yi Y P, Huang S Q, et al. Effects of deformation temperature on microstructure and mechanical properties of 2A14 aluminum alloy [J]. Materials Reports, 2020, 34(6): 100-104.

[10]叶茂, 孟富新, 姜枫, . 2A14 铝合金的固溶和形变组织[J]. 金属热处理, 2014, 39(5): 31-35.

Ye M, Meng F X, Jiang F, et al. Solution and deformation microstructure of 2A14 aluminum alloy[J]. Heat Treatment of Metals, 2014, 39(5): 31-35.

[11]刘娟,兰箭. 2A14 铝合金的固溶-冷变形-时效工艺[J]. 金属热处理, 2018, 43(7): 163-167.

Liu J, Lan J. Solution-cold deformation-aging process of 2A14 aluminum alloy[J]. Heat Treatment of Metals, 2018, 43(7): 163-167.

[12]刘智, 岳太文, 刘旭辉. 2A14铝合金筒体锻件成形工艺分析[J]. 大型铸锻件, 2016, (5): 52-54.

Liu Z, Yue T W, Liu X H. Analysis of forming process of 2A14 aluminum alloy cylinder forgings [J]. Heavy Castings and Forgings, 2016, (5): 52-54.

[13]GB/T 3190—2020,变形铝及铝合金化学成分[S].

GB/T 3190—2020, Chemical composition of wrought aluminum and aluminum alloys[S].

[14]QJ 502A—2001,铝合金、铜合金锻件技术条件[S].

QJ 502A—2001, Technical specifications for aluminum alloy and copper alloy forgings[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9