[1]Sun J, Daliri A, Lu G, et al. Tensile failure of fibremetallaminates made of titanium and carbonfibre/epoxy laminates[J]. Materials & Design, 2019, 183:108139.
[2]Lin Y, Cheng L, Li H, et al. Interlaminar failure behavior of Glare laminates under double beam fivepointbending load[J]. Composite Structures, 2018, 201: 79-85.
[3]Kai J A, Hao W B, Jie T, et al. Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model[J]. Composites Part A: Applied Science and Manufacturing, 124: 105490-105490.
[4]Hu Y X,Zheng X W, Wang D Y, et al. Application of laser peen forming to bend fibre metal laminates by high dynamic loading[J]. Journal of Materials Processing Technology, 2015, 226: 32-39.
[5]Mamalis D, Obande W, Koutsos V, et al. Novel thermoplastic fibremetal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bondingsciencedirect[J]. Materials & Design, 2019, 162: 331-344.
[6]Vollertsen F, Hu Z, Niehoff H S, et al. State of the art in microforming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology, 2004, 151(1-3): 70-79.
[7]Engel U, Eckstein R. Microformingfrom basic research to its realization[J]. Journal of Materials Processing Technology, 2002, 125-126: 35-44.
[8]Raulea L V, Goijaerts A M, Govaert L E, et al. Size effects in the processing of thin metal sheets[J]. Journal of Materials Processing Technology, 2001, 115(1): 44-48.
[9]Krishnan N, Zhong W, Lu H, et al. Microforming: Experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM[J]. Journal of Manufacturing Science & Engineering, 2004, 126(4): 313-316.
[10]刘芳, 彭林法, 来新民. 基于尺度效应的微细薄板本构模型的建立[J]. 材料科学与工艺, 2008,(1): 31-33.
Liu F, Peng L F, Lai X M. Constitutive model of micro sheet metal based on the size effect[J]. Materials Science and Technology, 2008,(1):31-33.
[11]张玲, 吴杰锋, 丁毅. 基于尺度效应的不锈钢超薄板力学性能及断裂行为研究[J]. 热加工工艺, 2016, 45(10): 83-85.
Zhang L, Wu J F, Ding Y. Research on mechanical property and fracture behavior of stainless steel ultra thin sheet based on size effect[J]. Hot Working Technology, 2016, 45(10): 83-85.
[12]崔保金, 童国权, 马振武. H80薄板拉伸性能的尺寸效应[J]. 材料科学与工艺, 2017, 25(2): 45-49.
Cui B J, Dong G Q, Ma Z W. Size effects on tensile properties of H80 thin sheets[J]. Materials Science and Technology, 2017, 25(2): 45-49.
[13]彭林法, 李成锋, 来新民. 介观尺度下的微冲压工艺特点分析[J]. 塑性工程学报, 2007,14(4): 54-59.
Peng L F, Li C F, Lai X M, et al. Characteristic analysis of stamping process in Micro/Meso scale[J]. Journal of Plasticity Engineering, 2007,14(4): 54-59.
[14]Cortes P, Cantwell W J. The prediction of tensile failure in titaniumbased thermoplastic fibremetal laminates[J]. Composites Science & Technology, 2006, 66(13):2306-2316.
[15]Jin K, Chen K, Luo X, et al. Fatigue crack growth and delamination mechanisms of Ti/CFRP fibre metal laminates at high temperatures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6):13178.
[16]李磊, 郎利辉, 轩永波, 等. 基于单向拉伸的半固化GLARE层板成形性能分析[J]. 锻压技术, 2021, 46(2): 200-205.
Li L, Lang L H, Xuan Y B, et al. Analysis on forming performance of semicured GLARE laminate based on uniaxial tensile[J]. Forging & Stamping Technology, 2021, 46(2): 200-205.
[17]Wang Y, Hou Y, Liu Y, et al. Investigation of ultrasonic deformation characteristics of ultrathin miniaturized TA1 foil[J]. Materials Science and Engineering, 2020, 777: 139070-139070.
[18]Mckown S. Investigation of scaling effects in fibermetal laminates[J]. Journal of Composite Materials, 2008, 42(9):865-888.
[19]Carrillo J G, Cantwell W J. Scaling effects in the tensile behavior of fibermetal laminates[J]. Composites Science & Technology, 2007, 67(7-8):1684-1693.
[20]Hallett S R, Jiang W G, Wisnom M R. Effect of stacking sequence on openhole tensile strength of composite laminates[J]. Aiaa Journal, 2009, 47(7):1692-1699.
[21]Kashani M H, Sadighi M, Mohammadkhah M, et al. Investigation of scaling effects on fiber metal laminates under tensile and flexural loading[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2013,229(3):189-201.
[22]HB 7736.5—2004, 复合材料预浸料物理性能试验方法第5部分:树脂含量的测定[S].
HB 7736.5—2004, Test method for physical properties of composite material prepreg—Part 5: Determination of resin content [S].
[23]HB 7736.3—2004, 复合材料预浸料物理性能试验方法第3部分:纤维面密度的测定[S].
HB 7736.3—2004, Test method for physical properties of composite material prepreg—Part 3: Determination of fiber mass per unit area [S].
[24]HB 7736.2—2004, 复合材料预浸料物理性能试验方法第2部分:面密度的测定[S].
HB 7736.2—2004, Test method for physical properties of composite material prepreg—Part 2: Determination of mass per unit area [S].
[25]HB 7736.4—2004, 复合材料预浸料物理性能试验方法第4部分:挥发份含量的测定[S].
HB 7736.4—2004, Test method for physical properties of composite material prepreg—Part 4: Determination of volatiles content [S].
[26]姚瑶. 微尺度下纯铜箔的力学性能及弯曲回弹研究[D]. 济南:山东大学,2015.
Yao Y. Research on Mechanical Properties and Bending Springback of Pure Copper foil under Micro Scale[D]. Jinan: Shandong University, 2015.
[27]王永贵, 梁宪珠,曹正华. 纤维金属层板及其在大型飞机上的应用[A]. 中国力学学会. 第十五届全国复合材料学术会议论文集: 下册[C]. 哈尔滨:中国力学学会, 2008.
Wang Y G, Liang X Z, Cao Z H. Fibre metal laminate and its application in large aircraft[A].The Chinese Society of Theoretical and Applied Mechanics.Proceedings of the 15th National Conference on Composites: Volume 2[C]. Haierbin: The Chinese Society of Theoretical and Applied Mechanics,2008.
[28]郎利辉, 张闫飞, 关世伟. 基于单向拉伸的GLARE板力学性能测试[J]. 精密成形工程, 2018, 10(6): 30-33.
Lang L H, Zhang Y F, Guan S W. Test on mechanical properties of GLARE plate based on uniaxial tensile[J]. Journal of Netshape Forming Engineering, 2018, 10(6):30-33.
[29]Hancox N L. Engineering mechanics of composite materials[J]. Materials and Design, 1996, 17(2): 114-114.
[30]Gau J T, Principe C, Wang J. An experimental study on size effects on flow stress and formability of aluminm and brass for microforming[J]. Journal of Materials Processing Technology, 2007, 184(1-3):42-46.
|