网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超薄微尺度碳纤维/TA1复合层板的拉伸断裂行为
英文标题:Tensile fracture behavior for ultrathin micro scale carbon fibre/TA1 composite laminates
作者:郭宏 王耀 宋国鹏 程娥 赵丽滨 胡宁 郎利辉 
单位:河北工业大学 清华大学苏州汽车研究院(相城) 华中科技大学 北京航空航天大学 
关键词:超薄TiGr层板 断裂行为 纤维层 金属层 本构模型 准静态单向拉伸 
分类号:TB333
出版年,卷(期):页码:2022,47(10):72-81
摘要:

 基于三维Hashin失效准则、双线性牵引-分离法则、BK失效准则和韧性准则,分别定义纤维增强复合材料层、Cohesive粘结层、超薄TA1钛合金层(0.04 mm)的损伤本构模型,采用Abaqus/Explicit模块并关联VUMAT子程序,对该超薄TiGr碳纤维-钛合金层板进行准静态单向拉伸模拟,并通过准静态拉伸试验对模拟结果进行了验证,研究了超薄TiGr层板的单向拉伸变形规律。结果表明:试验和有限元模拟得到的断裂位移分别为1.60和1.53 mm,二者的相对误差为4.3%;试验与模拟的拉伸断裂缺口部位均为试件圆角区域,证明了有限元模型的准确性。并且,纤维结构对其力学性能的影响比较大:在拉伸前中期,纤维层与金属层表现出较好的协同变形能力;拉伸后期,层板出现轻微分层现象,其协同变形能力逐渐降低,最终超薄TiGr层板各组层同时断裂。

 Based on 3D Hashin failure criteria,bilinear traction-separation criteria,B-K failure criteria and ductile criteria,the damage constitutive models of fiber-reinforced composite layer,Cohesive adhesive layer and ultrathin TA1 titanium alloy layer (0.04 mm) were defined respectively, and the quasi-static uniaxial tensile simulation of ultrathin TiGr laminates of carbon fiber-titanium alloy was carried out by Abaqus/Explicit module and VUMAT subroutine. Then, the simulation results were verified by quasi-static tensile test, and the uniaxial tensile deformation law of ultrathin TiGr laminates was studied. The results show that the fracture displacements obtained by test and finite element model are 1.60 and 1.53 mm, respectively. The relative error between the test and simulation results is 4.3%. Both the test and simulated tensile fracture notches are the fillet area of specimen, which proves the accuracy of the finite element model. In addition, the fiber structure has a great influence on its mechanical properties, in the early and middle stages of tensile, the fiber and metal layers show good cooperative deformation ability, while in the later stage of tensile, the laminates appear slight delamination, its cooperative deformation ability gradually decreases. Finally, all layers of ultrathin TiGr laminates are broken at the same time.

基金项目:
国家自然科学基金资助项目 (52005153);中国博士后科学基金资助项目 (2022T150372,2021M701962);中央引导地方科技发展项目 (206Z1803G);材料成形与模具技术国家重点实验室开放课题研究基金 (P2021-012)
作者简介:
郭宏 (1998-),男,硕士研究生,E-mail:hggh2020@126.com;通信作者:王耀 (1986-),男,博士,副教授,E-mail:bhwy2014@126.com
参考文献:

[1]Marissen R. Fatigue crack growth predictions in Aramid reinforced aluminum laminates (ARALL)[J]. Journal of Aircraft, 2015, 25(2): 135-140.

[2]郑兴伟, 卢佳, 庄欣, . 航空用玻璃纤维铝合金层板成形技术研究进展[J]. 材料导报, 2018, 32(S2): 413-418.

Zhen X W, Lu J, Zhuang X, et al. A review on the forming technology of aerospace glassreinfoeced aluminum laminates[J]. Materials Reports, 2018, 32(S2): 413-418.

[3]Wu X T, Zhan L H, Huang M H, et al. Corrosion damage evolution and mechanical properties of carbon fiber reinforced aluminum laminate[J]. Journal of Central South University, 2021, 28(3): 657-668.

[4]Cortes P, Cantwell W J. The tensile and fatigue properties of carbon fiberreinforced peektitanium fibermetal laminates[J]. Journal of Reinforced Plastics and Composites, 2004, 23(15):1615-1623.

[5]李成斌. 电铸铜、镍金属微器件的工艺研究[D]. 大连:大连理工大学, 2013.

Li C B. Process Study of Metal Micro Devices Fabricated by Copper or Nickel Electroforming[D]. Dalian: Dalian University of Technology, 2013.

[6]Wang Y, Hou Y Z, Liu Y, et al. Ultrasonicassisted preparationformingcuring process for ultrathin microfiber metal laminates: Deformation characteristics[J]. Materials & Design, 2020, 195: 109019.

[7]Kashani M H, Sadighi M, Mohammadkhah M, et al. Investigation of scaling effects on fiber metal laminates under tensile and flexural loading[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design & Applications, 2015, 229(3): 189-201.

[8]Carrillo J G, Cantwell W J. Scaling effects in the tensile behavior of fibermetal laminates[J]. Composites Science & Technology, 2007, 67(7): 1684-1693.

[9]Mckown S. Investigation of scaling effects in fibermetal laminates[J]. Journal of Composite Materials, 2008, 42(9): 865-888.

[10]Hallett S R, Jiang W G, Wisnom M R. Effect of stacking sequence on openhole tensile strength of composite laminates[J]. Aiaa Journal, 2009, 47(7): 1692-1699.

[11]陶杰, 李华冠, 潘蕾, . 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5): 626-636.

Tao J, Li H G, Pan L, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 47(5): 626-636.

[12]Chaphalkar P, Kelkar A D. Classical laminate theory model for twill weave fabric composites[J]. Composites Part A: Applied Science & Manufacturing, 2001, 32(9): 1281-1289.

[13]MoussaviTorshizi S E, Dariushi S, Sadighi M, et al. A study on tensile properties of a novel fiber/metal laminates[J]. Materials Science & Engineering A, 2010, 527(18): 4920-4925.

[14]Rathnasabapathy M, Mouritz A P, Orifici A C. Finite element modelling of the impact response of fibre metal laminates under tension preloading[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106930.

[15]Pan L, Cao J M, Yapici U, et al. Fracture toughness of a corrugate interface between two dissimilar materials[J]. Materials Research Innovations, 2015, 19(S6): 65-68.

[16]Gargano A, Das R, Mouritz A P. Finite element modelling of the explosive blast response of carbon fibrepolymer laminates[J]. Composites Part B: Engineering, 2019, 177: 107412.

[17]Isbilir O, Ghassemieh E. Finite element analysis of drilling of carbon fibre reinforced composites[J]. Applied Composite Materials, 2012, 19(3): 637-656.

[18]Hur Y C, Kim D, Lee K S, et al. Finite element analysis of selfpiercing riveting of aluminum alloy and carbon fiber reinforced polymer composites[J]. Iop Conference Series Materials Science and Engineering, 2020, 967: 012049.

[19]James S, Luz L D L. Finite element analysis and simulation study of CFRP/Ti stacks using ultrasonic additive manufacturing[J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1): 4421-4431.

[20]姚瑶. 微尺度下纯铜箔的力学性能及弯曲回弹研究[D]. 济南:山东大学, 2015.

Yao Y. Research on Mechanical Properties and Bending Springback of Pure Copper Foil Under Micro Scale[D]. Jinan: Shandong University, 2015.

[21]王飞龙, 张勇, 龙刚, . TA1工业纯钛热物性参数测量及应用研究[J]. 钢铁钒钛, 2021, 42(2): 48-52.

Wang F L, Zhang Y, Long G, et al. Thermal parameters measurement and application of TA1 industrial pure titanium[J]. Iron Steel Vanadium Titanium, 2021, 42(2): 48-52.

[22]陈炜, 张杨, 丁毅, . 不锈钢超薄板力学性能的尺度效应[J]. 塑性工程学报, 2014, 21(6): 71-74.

Chen W, Zhang Y, Ding Y, et al. Size effect of tensile property for ultrathin 304 stainless steel[J]. Journal of Plasticity Engineering, 2014, 21(6): 71-74.

[23]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.

[24]Zhou J, Wen P, Wang S. Finite element analysis of a modified progressive damage model for composite laminates under lowvelocity impact[J]. Composite Structures, 2019, 225: 111113.

[25]Zhu L, Cao S, Zhang X, et al. Bending failure behavior of the glass fiber reinforced composite IBeams formed by a novel bending pultrusion processing technique[J]. Autex Research Journal, 2022, 22(2): 172-176.

[26]钱立伟. 热塑性连续碳/玻璃纤维车身部件动态冲击数值仿真研究[D]. 大连:大连理工大学, 2020.

Qian L W. Numerical Simulation Study on Dynamic Impact of Thermoplastic Continuous Carbon/Fiberglass Body Parts[D]. Dalian: Dalian University of Technology, 2020.

[27]李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086.

Li X N, Wang Y S, Zhou X F. Status of numerical simulation methods for delamination damage of composite laminates[J].Acta Materiae Compositae Sinica, 2021, 38(4): 1076-1086.

[28]寇剑锋, 徐绯, 郭家平, . 黏聚力模型破坏准则及其参数选取[J]. 机械强度, 2011, 33(5): 714-718.

Kou J F, Xu F, Guo J P, et al. Damage laws of cohesive zone model and selection of the parameters[J]. Journal of Mechanical Strength, 2011, 33(5): 714-718.

[29]郎利辉, 张闫飞, 关世伟. 基于单向拉伸的Glare板力学性能测试[J]. 精密成形工程, 2018, 10(6): 30-33.

Lang L H, Zhang Y F, Guan S W. Test on mechanical properties of Glare plate based on uniaxial tensile[J]. Journal of Netshape Forming Engineering, 2018, 10(6):30-33.

[30]Sun J, Daliri A, Lu G, et al. Tensile behaviour of titaniumbased carbonfibre/epoxy laminate[J]. Construction and Building Materials, 2021, 281: 122633.

[31]Sharma A P, Velmurugan R. The uniaxial tensile response of titaniumbased fiber metal laminates[J]. Journal of Physics Conference Series, 2020, 1474: 1-13.

[32]Hancox N L. Engineering mechanics of composite materials[J]. Materials and Design, 1996, 17(2): 114-114.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9