网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
加载工况对弹性模成形过程中轻合金薄板成形性的影响
英文标题:Influence of loading conditions on formability of light alloy sheet in elastic die forming process
作者:许东方 温光磊 王志飞 林永健 相楠 郭俊卿 
单位:1.华中科技大学 材料科学与工程学院 材料成形与模具技术国家重点实验室   2.一汽模具制造有限公司 3.武汉华工激光工程有限责任公司   4.山东大学 材料科学与工程学院 5.北京机电研究所有限公司   6. 广东汇成真空科技股份有限公司 
关键词:软模成形 板材柔性成形 弹性模 加载工况 轻合金板材 
分类号:TG311
出版年,卷(期):页码:2022,47(12):56-67
摘要:

 为了分析柔性传力介质提升板材成形性的机理,开展了不同加载工况下轻质合金薄板的弹性模胀形实验,通过数字图像相关技术获取了板材构型和应变分布,采用有限元软件ANSYS/LS-DYNA分析了弹性模压力场和板材应力场。结合实验与有限元结果,研究了弹性模邵尔硬度、板材材质、板材厚度、界面摩擦等因素对轻合金板材成形性的影响规律。结果表明:随着弹性模邵尔硬度、板材屈服强度、板材厚度的增大,成形载荷逐渐增大;板材厚度越大,则成形性越好;板料屈服强度的增大会导致板材的均匀塑性变形能力降低;随着弹性模邵尔硬度降低,板材的径向应力减小,应力状态由近似单轴应力状态向等双拉状态变化,板材的充型能力增强。

 In order to analyze the mechanism of flexible force-transmitting medium improving sheet formability, the elastic die bulging experiments of light alloy sheet under different loading conditions were carried out, and the configuration and strain distribution of sheet were obtained by using digital image correlation technology. Then, the pressure field of elastic die and stress field of sheet were analyzed by finite element software ANSYS/LS-DYNA, and the influence laws of Shore hardness of elastic die, sheet material, sheet thickness and interfacial friction on formability of light alloy sheet were studied by combining experimental and finite element simulation results. The results show that with the increasing of Shore hardness of elastic die, yield strength and thickness of sheet, the forming load increases gradually. The thicker the sheet is, the better the formability is. However, the increasing of yield strength of sheet reduces the uniform plastic deformation of sheet. With the decreasing of Shore hardness of elastic die, the radial stress of sheet decreases, the stress state changes from uniaxial stress state to nearly equally-biaxial tension state, and the filling capacity of sheet increases.

基金项目:
国家自然科学基金资助项目(51905156,52275329);中国博士后科学基金资助项目(2020M672221)
作者简介:
许东方(2001-),男,硕士研究生 E-mail:dongfang_0922@163.com 通信作者:相楠(1987-),男,博士,副教授 E-mail:xiangnan-87@163.com
参考文献:

 [1]Timurkutluk B, Onbilgin S. Design and fabrication of novel interconnectors for solid oxide fuel cells via rubber pad forming[J]. International Journal of Energy Research, 2020, 44 (11):8716-8729.


 


[2]Kukreja G, Narayanan R G. Forming of adhesive-bonded sandwich sheets with a rubber pad[J]. Metallurgical & Materials Transactions A, 2019, 50 (4):1-14.


 


[3]Quadrini F, Santo L, Squeo E A. Flexible forming of thin aluminum alloy sheets[J]. International Journal of Modern Manufacturing Technologies, 2010, 21):79-84.


 


[4]Belhassen L, Koubaa S, Wali M, et al. Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal[J]. International Journal of Mechanical Sciences, 2016117:218-226.


 


[5]刘艳雄. 燃料电池金属双极板软模成形研究[D]. 武汉:武汉理工大学, 2010.


 


Liu Y X. Research on Soft Forming of Metal Bipolar Plate for Fuel Cell [D]. Wuhan: Wuhan University of Technology, 2010.


 


[6]Sun Y N, Wan M, Wu X D. Wrinkling prediction in rubber forming of Ti-15-3 alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10):3002-3010.


 


[7]Chen L, Bai Y, Jiang Z Y, et al. Numerical and experimental- studies on wrinkling control methods of sheet metal part with high curvature and large flange in rubber forming[J]. Advances in Mechanical Engineering, 2019, 11(10):168781401988378.


 


[8]Elyasi M, Khatir F A, Hosseinzadeh M. Manufacturing metallic bipolar plate fuel cells through rubber pad forming process[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12):3257-3269.


 


[9]Koubaa S, Belhassen L, Wali M, et al. Numerical investigation of the forming capability of bulge process by using rubber as a forming medium[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(5-8):1-10.


 


[10]Shen Z B, Zhang J D, Liu H X, et al. Reducing the rebound effect in micro-scale laser dynamic flexible forming through using plasticine as pressure-carrying medium[J]. International Journal of Machine Tools and Manufacture, 2019, 141:1-18.


 


[11]Wang X, Du D Z, Zhang H , et al. Investigation of microscale laser dynamic flexible forming process-simulation and experiments[J]. International Journal of Machine Tools & Manufacture, 2013, 67:8-17.


 


[12]Song L B, Zhang X, Zhang Y L, et al. Shortening post-processing and improving forming quality of holes in laser shock punching with the aid of silicone rubber[J]. Optics & Laser Technology, 2018, 106:442-450.


 


[13]Shen Z B, Wang X, Liu H X, et al. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming[J]. Applied Surface Science, 2015, 327:307-312.


 


[14]Xu J R, Zhou Y Q, Cui J J, et al. Experimental study for rubber pad forming process of AZ31 magnesium alloy sheets at warm temperature[J]. International Journal of Advanced Manufacturing Technology, 2016, 89:1079-1087.


 


[15]Chen L, Chen H Q, Wu C, et al. Experimental and numerical studies on the formability of TB5 titanium sheet in rubber cold forming[J]. International Journal of Advanced Manufacturing Technology, 2016, 86:1-10.


 


[16]Bagheri F, Madoliat R, Sedighi M, et al. Rubber-assisted pre-hemming process: A parametric study[J]. Journal of Manufacturing Processes, 2019, 38(2):328-337.


 


[17]Hasan Ghaforian Nosrati, Mahdi Gerdooei, Mehdi Falahati Naghibi. Experimental and numerical study on formability in tube bulging: A comparison between hydroforming and rubber pad forming[J]. Materials & Manufacturing Processes, 2016, 32(12):1353-1359.


 


[18]Irthiea I, Green G, Hashim S, et al. Experimental and numerical investigation on micro deep drawing process of stainless steel 304 foil using flexible tools[J]. International Journal of Machine Tools and Manufacture, 2014, 76(1):21-33.


 


[19]Lee K H, Jin C K, Kang C G, et al. Fabrication of titanium bipolar plates by rubber forming process and evaluation characteristics of TiN coated titanium bipolar plates[J]. Fuel Cells, 2015, 15(1):170-177.


 


[20]Teng F, Wang H Y, Sun J C, et al. Thickness analysis of complex two-step micro-groove on plate during rubber pad forming process[J]. Proceedings of the Institution of Mechanical EngineersPart CJournal of Mechanical Engineering Science,2020,235(1): 3002-3010.


 


[21]田国富, 李文杰,李君基. 基于Dynaform6016-T4P铝合金汽车机舱盖模面优化 [J]. 锻压技术,2020,45(1):55-62.


 


Tian G FLi W JLi J J. Optimization on die face of engine compartment cover for 6016-T4P aluminum alloy based on Dynaform [J]. Forging & Stamping Technology2020,45(1):55-62.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9