网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
弹壳拉深成形工艺分析及模具设计
英文标题:Process analysis and die design on cartrideg deep drawing
作者:刘新1  郭睦基1  李登虎1  周晗2  刘东1  张高娟1 
单位:1.重庆长江电工工业集团有限公司 2.陆军装备部 装备项目管理中心 
关键词:弹壳孟子 拉深成形 底厚减薄超差 模具设计 金属流动规律 弯曲变形量 
分类号:TG376
出版年,卷(期):页码:2022,47(12):81-86
摘要:

 以某型号弹壳盂子为研究对象,针对初始设计方案拉深成形后盂子中心底厚超差的问题,通过数值模拟分析其原因:第1次拉深过程中,坯料的弯曲变形量过大,使得坯料无约束底部的弯曲半径变小、径向拉应力过大,从而导致坯料底部减薄超差。在此基础上,提出控制坯料第1次拉深成形的弯曲变形量、减少坯料底部径向拉应力的优化方案,数值模拟结果显示,盂子中心底厚达到3.43 mm,中心底厚得到有效提升。采用优化方案进行工艺试制,其结果表明,盂子中心底厚平均值达到3.452 mm,盂子外径、高度和中心底厚均达到了设计要求。数值模拟结果与实验结果的吻合度高,其对实际生产具有指导性作用。

 For a certain type of cartridge case, aiming at the problem of out-of-tolerance for center bottom thickness of case after deep drawing in the initial design scheme, the reason was analyzed by numerical simulation. The bending deformation amount of blank was too large during the first deep drawing process, so that the bending radius at the unconstrained bottom of the blank became smaller and the radial tensile stress was too larger, resulting in the thinning of the bottom of blank out of tolerance. On this basis, an optimized scheme was proposed to control the bending deformation amount of blank in the first deep drawing process and reduce the radial tensile stress at the bottom of blank. The simulation results show that the center bottom thickness of case has been effectively increased to 3.430 mm. And the optimized scheme was used for process test. The results show that the center bottom thickness average value of case reaches 3.452 mm, and the outer diameter, height and center bottom thickness of  case achieve the designed requirements. Thus, the numerical simulation results are in good agreement with the experimental results, which can guide the actual production.

基金项目:
作者简介:
刘新(1995-),女,硕士,工程师 E-mail:18426457621@163.com
参考文献:

 (1)为了对弹壳的拉深成形过程进行仿真,应用DEFORM-2D构建弹壳拉深成形有限元模型,模拟分析了弹壳拉深成形过程中的金属塑性流动规律及应力、应变的变化情况。


 


(2)经数值模拟分析可知,初始设计方案中弹壳盂子中心底厚减薄超差的主要原因为:第1次拉深成形过程中,坯料快速弯曲导致无约束底部的弯曲半径变小、径向拉应力过大,从而使得坯料底部减薄超差。


 


(3)针对该问题,提出一种控制坯料第1次拉深成形的弯曲半径、减少坯料底部径向拉应力的优化方案。数值模拟和实际试制结果均显示,该优化方案可以有效改善盂子中心底厚,避免减薄超差的缺陷问题。


 


参考文献:


 


[1]肖善超. 弹壳多模一次连续变薄拉深工艺研究[D]. 秦皇岛:燕山大学,2012.


 


Xiao S C. Research on Multi-mode-one-off Ironing Process for Cartridge Case[D]. Qinhuangdao: Yanshan University, 2012.


 


[2]陈跃健, 王浩. 某带减速气囊的航空子弹气动特性研究[J]. 兵器装备工程学报,20214210):60-64,85.


 


Chen Y J, Wang H. Research on aerodynamic characteristics of a bullet with deceleration airbag [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 60-64,85.


 


[3]宋晨, 李磊. 旋翼飘带稳定式子弹降落弹道特性[J]. 兵器装备工程学报,20214211):134-139.


 


Song C, Li L. Descending trajectory characteristics of rotor-wing and ribbon stabilized bullets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 134-139.


 


[4]冉松, 涂集林,黎梅,等. 智能制造在枪弹制造行业内的应用[J]. 兵工自动化,20203911):24-26,35.


 


Ran S, Tu J L, Li M, et al. Application of intelligent manufacturing system in ammunition industry [J]. Ordnance Industry Automation, 2020, 39(11): 24-26,35.


 


[5]涂集林, 李登虎,张亚军,等. 枪弹大批量定制发展策略研究[J]. 机械,2021487):44-51.


 


Tu J L, Li D H, Zhang Y J, et al. Development strategy of mass customization of ammunition [J]. Machinery, 2021, 48(7): 44-51.


 


[6]李晓光, 魏志芳,高建中,等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化,2016352):82-85.


 


Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.


 


[7]胡冶昌, 魏志芳,李晓光,等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报,201724(2)122-127.


 


Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.


 


[8]彭连友, 黄志星,张琦. 一种新的盂子毛坯成形工艺技术[J]. 模具技术,2013,(2):34-36.


 


Peng L Y, Huang Z X, Zhang Q. A new craft for cup-shaped blank forming process [J]. Die and Mould Technology, 2013, (2): 34-36.


 


[9]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆: 重庆大学,2015.


 


Wang Y S. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge [D]. Chongqing:Chongqing University, 2015.


 


[10]朱绪强, 李德才,王龙,等. 小口径药筒轻量化及其工艺[J]. 兵工自动化,2013321):81-83.


 


Zhu X Q, Li D C, Wang L, et al. Lightweight of small caliber cartridge case and technological process [J]. Ordnance Industry Automation, 2013, 32(1):81-83.


 


[11]廖仕军, 吕刚,薛松,等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报,20204111):182-185,206.


 


Liao S J, Lyu G, Xue S, et al. Study on flattening shaping process-optimized for campaign bullet [J]. Journal of Ordnance Equipment Engineering,2020, 41(11): 182-185,206.


 


[12]范才河, 沈彤,胡泽艺. 铝合金弹壳成形及失效分析[J]. 包装学报,2019111):87-93.


 


Fan C H, Shen T, Hu Z Y, et al. Forming and failure analysis of aluminum alloy cartridge case [J]. Packaging Journal, 2019, 11(1): 87-93.


 


[13]胡建军, 李小平. DEFORM-3D塑性成形CAE应用教程[M]. 北京:北京大学出版社, 2011.


 


Hu J JLi X P. Application Tutorial of CAE in Plastic Forming by DEFROM-3D [M]. Beijing: Peking University Press, 2011.


 


[14]隋毅, 梁强. 组合形活塞销冷镦挤成形工艺[J]. 锻压技术,2020451):109-113,124.


 


Sui Y, Liang Q. Cold upsetting-extruding process for combination piston-pins [J]. Forging & Stamping Technology, 2020, 45(1): 109-113,124.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9