(1)为了对弹壳的拉深成形过程进行仿真,应用DEFORM-2D构建弹壳拉深成形有限元模型,模拟分析了弹壳拉深成形过程中的金属塑性流动规律及应力、应变的变化情况。
(2)经数值模拟分析可知,初始设计方案中弹壳盂子中心底厚减薄超差的主要原因为:第1次拉深成形过程中,坯料快速弯曲导致无约束底部的弯曲半径变小、径向拉应力过大,从而使得坯料底部减薄超差。
(3)针对该问题,提出一种控制坯料第1次拉深成形的弯曲半径、减少坯料底部径向拉应力的优化方案。数值模拟和实际试制结果均显示,该优化方案可以有效改善盂子中心底厚,避免减薄超差的缺陷问题。
参考文献:
[1]肖善超. 弹壳多模一次连续变薄拉深工艺研究[D]. 秦皇岛:燕山大学,2012.
Xiao S C. Research on Multi-mode-one-off Ironing Process for Cartridge Case[D]. Qinhuangdao: Yanshan University, 2012.
[2]陈跃健, 王浩. 某带减速气囊的航空子弹气动特性研究[J]. 兵器装备工程学报,2021,42(10):60-64,85.
Chen Y J, Wang H. Research on aerodynamic characteristics of a bullet with deceleration airbag [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 60-64,85.
[3]宋晨, 李磊. 旋翼飘带稳定式子弹降落弹道特性[J]. 兵器装备工程学报,2021,42(11):134-139.
Song C, Li L. Descending trajectory characteristics of rotor-wing and ribbon stabilized bullets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 134-139.
[4]冉松, 涂集林,黎梅,等. 智能制造在枪弹制造行业内的应用[J]. 兵工自动化,2020,39(11):24-26,35.
Ran S, Tu J L, Li M, et al. Application of intelligent manufacturing system in ammunition industry [J]. Ordnance Industry Automation, 2020, 39(11): 24-26,35.
[5]涂集林, 李登虎,张亚军,等. 枪弹大批量定制发展策略研究[J]. 机械,2021,48(7):44-51.
Tu J L, Li D H, Zhang Y J, et al. Development strategy of mass customization of ammunition [J]. Machinery, 2021, 48(7): 44-51.
[6]李晓光, 魏志芳,高建中,等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化,2016,35(2):82-85.
Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.
[7]胡冶昌, 魏志芳,李晓光,等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报,2017,24(2):122-127.
Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.
[8]彭连友, 黄志星,张琦. 一种新的盂子毛坯成形工艺技术[J]. 模具技术,2013,(2):34-36.
Peng L Y, Huang Z X, Zhang Q. A new craft for cup-shaped blank forming process [J]. Die and Mould Technology, 2013, (2): 34-36.
[9]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆: 重庆大学,2015.
Wang Y S. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge [D]. Chongqing:Chongqing University, 2015.
[10]朱绪强, 李德才,王龙,等. 小口径药筒轻量化及其工艺[J]. 兵工自动化,2013,32(1):81-83.
Zhu X Q, Li D C, Wang L, et al. Lightweight of small caliber cartridge case and technological process [J]. Ordnance Industry Automation, 2013, 32(1):81-83.
[11]廖仕军, 吕刚,薛松,等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报,2020,41(11):182-185,206.
Liao S J, Lyu G, Xue S, et al. Study on flattening shaping process-optimized for campaign bullet [J]. Journal of Ordnance Equipment Engineering,2020, 41(11): 182-185,206.
[12]范才河, 沈彤,胡泽艺. 铝合金弹壳成形及失效分析[J]. 包装学报,2019,11(1):87-93.
Fan C H, Shen T, Hu Z Y, et al. Forming and failure analysis of aluminum alloy cartridge case [J]. Packaging Journal, 2019, 11(1): 87-93.
[13]胡建军, 李小平. DEFORM-3D塑性成形CAE应用教程[M]. 北京:北京大学出版社, 2011.
Hu J J,Li X P. Application Tutorial of CAE in Plastic Forming by DEFROM-3D [M]. Beijing: Peking University Press, 2011.
[14]隋毅, 梁强. 组合形活塞销冷镦挤成形工艺[J]. 锻压技术,2020,45(1):109-113,124.
Sui Y, Liang Q. Cold upsetting-extruding process for combination piston-pins [J]. Forging & Stamping Technology, 2020, 45(1): 109-113,124.
|