网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
纯铜纳米晶切屑的等通道转角挤压块体成形工艺
英文标题:ECAP block forming process for pure copper nanocrystalline chips
作者:吴春凌 聂斌 
单位:湖北工业大学 机械工程学院 
关键词:纳米晶切屑 等通道转角挤压 热压协同 挤压道次 变形抗力 
分类号:TG376
出版年,卷(期):页码:2022,47(12):122-128
摘要:

 通过有限元和试验相结合的方法,探究等通道转角挤压试验中挤压道次对由挤压纳米晶纯铜切屑制备的纯铜棒料所受的等效应变、挤压载荷和平均等效应力的影响规律,研究在热压协同作用下挤压道次对纳米晶细化和纳米成形块体致密性的影响。结果表明:随着挤压道次的增加,试样的平均等效应变和等效应力逐渐增大,变形区的等效应变分布的均匀性降低,试样的硬度先增大后降低;随着挤压道次的增加,在低道次(<4道次)下挤压后试样的固化成形效果越好,在高道次(>4道次)下由于挤压试样受热和高压的作用,晶粒间难以融合固结,且材料出现的孔隙和裂痕增多,试样的变形抗力下降。

 The influence laws of extrusion passes on equivalent strain, extrusion load and average equivalent stress for pure copper bar prepared by extruding nanocrystalline pure copper chips in equal channel angular pressing(ECAP) test were explored by the combination of finite element and experiment, and the influences of extrusion passes on nanocrystalline refinement and compactness of nano-formed block under hot pressing synergy were studied. The results show that with the increasing of extrusion passes, the average equivalent strain and equivalent stress of sample gradually increase, the uniformity of equivalent strain distribution in the deformation zone decreases, and the hardness of sample first increases and then decreases. With the increasing of extrusion passes, the curing forming effect of sample after extrusion at low passes (< 4 passes) is better. However, at high passes (> 4 passes), due to the effect of heating and high pressure on extruded sample, it is difficult for grains to fuse and consolidate, the pores and cracks in the material increase, and the deformation resistance of sample decreases.

基金项目:
国家自然科学基金资助项目(51505135)
作者简介:
聂斌(1996-),男,硕士研究生 E-mail:nie_bin2019@163.com 通信作者:吴春凌(1976-),女,博士,副教授 E-mail:chunling_wu@126.com
参考文献:

 [1]肖宏, 高亚男,赵铁勇. 铁屑材料压制工艺及性能研究[J]. 材料科学与工艺,2011,19(1):65-70.


 


Xiao H, Gao Y N, Zhao T Y.  Compacting technology and property of iron scrap material[J]. Materials Science and Technology,2011,19(1):65-70.


 


[2]宋洪伟. 微米、亚微米与纳米超细晶粒钢的研究进展[J].世界科技研究与发展,2002,(6):31-35.


 


Song H W. Progress in the R & D of ultrafine grained steels on the micro-submicro- and nano- scale[J]. World Sci-Tech R & D,2002,(6):31-35.


 


[3]Srinivasan Swaminathan, Ravi Shankar M, Seongy Lee, et al. Large strain deformation and ultra-fine grained materials by machining[J].Materials Science and Engineering A,2005,410: 358-363.


 


[4]Gigax Jonathan G, El Atwani Osman, McCulloch Quinn, et al. Micro- and mesoscale mechanical properties of an ultra-fine grained CrFeMnNi high entropy alloy produced by large strain machining[J].Scripta Materialia,2019,178: 508-512.


 


[5]梁博, 王庆娟,周晓,.大塑性变形制备超细晶金属材料的研究现状[J].特种铸造及有色合金,2017,37(8): 840-844.


 


Liang B, Wang Q J, Zhou X, et al. Research status of ultra-fine grained metallic materials processed by severe plastic deformation[J]. Special Casting & Nonferrous Alloys, 2017,37(8): 840-844.


 


[6]Krishna Mohan Agarwal, Tyagi R K, Anurag Dixit. Theoretical analysis of equal channel angular pressing method for grain refinement of metals and alloys[J]. Materials Today: Proceeding,2020,25(4):688-673.


 


[7]章震威, 王军丽,张清龙,.等通道转角挤压制备超细晶材料的研究与发展[J].材料导报,2017,31(1): 116-125.


 


Zhang Z W, Wang J L, Zhang Q L, et al. Producing ultrafine-grained materials by equal channel angular pressing: A review[J]. Materials Reports, 2017,31(1): 116-125.


 


[8]Hernández-Martínez S E, Cruz-Rivera J J, Martínez-Sánchez R, et al. Consolidation of AA 7075-2wt% ZrO2 composite powders by severe plastic deformation via ECAP[J]. Acta Metallurgica Sinica,2016,29(10): 895-901.


 


[9]李凌风, 巩子天纵,李萍.纯铝粉末等径角挤压固结模拟及实验研究[J]. 精密成型工程,2014,6(4):24-30.


 


Li L F, Gong Z T Z, Li P. Consolidation simulation and experimental research of pure aluminum powder materials during equal channel angular pressing[J]. Journal of Netshape Forming Engineering,2014,6(4):24-30.


 


[10]Karaman I, Haouaoui M, Maier H J. Nanoparticle consolidation using equal channel angular extrusion at room temperature[J]. Journal of Materials Science,2007,42(5):1561-1576.


 


[11]Ying T, Zheng M Y, Hu X S,et al. Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP[J]. Transactions of Nonferrous Metals Society of China,2010,20(S2):604-607.


 


[12]Namur Ricardo Sanson, Krapp Ferreira Ana Carolina, Feitosa Lorena Moraes, et al. Equal channel angular pressing consolidation and heat treatment of blended elemental powders of Fe-Mn-Al[J]. Materials Science Forum,2020, 6122:291-295.


 


[13]Hsiao-Chien Lee, Chuen-Guang Chao, Tzeng-Feng Liu, et al. Effect of temperature and extrusion pass on the consolidation of magnesium powders using equal channel angular extrusion[J].Materials Transactions,2013, 45(5): 765-768.


 


[14]Ceren Gode.Enhancing mechanical properties of consolidated nanocrystalline copper powder by means of equal channel angular pressing method[J].The Journal of Strain Analysis for Engineering Design,2021,56(8): 531-538.


 


[15]Chandra Sekhar K, Umamaeshwar Rao Y, Balasubramanian Ravisankar, et al. Effect of milling time on consolidation of Al5083 nano composite by equal channel angular pressing[J]. Materials Science Forum,2019,4783: 662-668.


 


[16]Li Y L, He L Z, Zhang L. Back pressure equal channel angular pressing of consolidate pure Al particles[J]. International Journal of Materials Science and Applications,2020,9(1):1-6.


 


[17]代晓军, 杨西荣,荆磊,等. 等通道挤压变形技术制备超细晶镁合金的研究进展[J].稀有金属,2020,44(12):1325-1332.


 


Dai X JYang X RJing Let al. Research progress in ultrafine grain magnesium alloy by equal channel angular pressing [J].  Chinese Journal of Rare Metals2020,44(12):1325-1332.


 


[18]张智敏, 潘健怡,陈宇星,. 铜铝复合板等通道转角挤压模具设计及数值模拟[J]. 锻压技术,2021,46(1):136-141.


 


Zhang Z MPan J YChen Y Xet al. Die design and numerical simulation of equal-channel angular pressing for Cu-Al composite plate [J]. Forging & Stamping Technology2021,46(1):136-141.


 


 


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9