网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
伺服拉深成形粘模行为及粘模抑制研究
英文标题:Research on sticking die behavior and sticking suppression in servo deep drawing
作者:徐 腾  王 鑫  冉家琪  龚 峰 
单位:深圳大学 
关键词:伺服压力机  拉深成形  粘模磨损  伺服曲线  粘模抑制 
分类号:TG386. 3
出版年,卷(期):页码:2023,48(1):1-13
摘要:
粘模磨损是一种常出现在金属板料拉深工艺过程中的成形缺陷, 为了进一步探究能够有效抑制粘模磨损的新方法, 对金属板料拉深粘模磨损问题的产生机理进行了详细阐述和深入分析, 对现有粘模磨损的表征以及仿真等方面的研究工作和实验结果进行了总结。相关的结论表明, 基于Archard 理论磨损模型的有限元仿真分析能够较好地反映拉深过程中的粘模磨损问题。随后, 对防治粘模磨损和伺服曲线模式优化的相关研究进展进行了归纳总结和对比分析, 深入探讨了粘模磨损的产生原因以及不同防治措施的优势与不足。最后, 基于伺服压力机提出了优化拉深行程曲线模式以减少拉深时产生的粘模磨损问题的方法, 并详细地分析了此方法在改善粘模磨损问题上的优势及可行性, 为粘模磨损领域的研究提供了借鉴。

 Sticking die wear is a kind of forming defect that often appears in the process of metal sheet drawing. Therefore, in order to further explore new methods that could effectively inhibit the wear of sticking die, the mechanism of wear problem of sticking die in sheet metal drawing was elaborated in detail and analyzed deeply, and the existing research work and experimental results on the characterization and simulation of the wear of sticking die were summarized. The relevant conclusions show that the finite element simulation analysis based on the Archard theoretical wear model can better reflect the wear problem of sticking die in the drawing process. Subsequently, some research progress on the prevention and control of sticking die wear and the optimization of servo curve mode were summarized and compared, and the causes of sticking die wear and the advantages and disadvantages of different prevention and control measures were discussed in depth. Finally, based on the servo press, the method that optimizing the drawing stroke curve mode was proposed to reduce the sticking die wear during drawing, and the advantages and feasibility of this method in improving the sticking die wear problem were analyzed in detail, which provides a reference for the research in the field of sticking die wear.

基金项目:
国家自然科学基金资助项目(52005341); 深圳大学与台北科技大学学术合作专题研究项目(2023010)
作者简介:
作者简介: 徐 腾(1988-), 男, 博士, 副研究员 E-mail: tengxu@ szu. edu. cn 通信作者: 龚 峰(1982-), 男, 博士, 教授 E-mail: gongfeng@ szu. edu. cn
参考文献:

 [1]  Atul S T, Babu M C L. A review on effect of thinning, wrinkling and spring-back on deep drawing process [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233 (4): 1011-1036.


[2]  李欣芮, 王晓康, 何万飞. 不锈钢制件拉深成形防粘结瘤的研究[J]. 模具工业, 2020, 46 (5): 61-65.

Li X R, Wang X K, He W F. Study on avoiding seizing tumor on die parts in drawing process of stainless steel parts [J]. Die & Mould Industry, 2020, 46 (5): 61-65.

[3]  林启权. 汽车用高强度钢板拉深多尺度粘模机制研究[A].第十二届设计与制造前沿国际会议[C]. 沈阳: 国家自然科学基金委员会, 2016.

Lin Q Q. Research on the multi-scale die sticking mechanism in deep drawing of high-strength steel plates for automobiles [A]. The 12th International Conference on Frontiers in Design and Manufacturing [C]. Shenyang: National Natural Science Foundation of China, 2016.

[4]  吴亮. 汽车用铝合金结构件冲压模具磨损仿真研究[J]. 锻压技术, 2021, 46 (11): 155-159.

Wu L. Simulation study on wear of stamping die for aluminum alloy structural parts of automobile [J]. Forging & Stamping Technology,2021, 46 (11): 155-159.

[5]  孙友松, 章争荣. 伺服成形技术及其若干发展动向[J]. 锻压技术, 2022, 47 (1): 1-16.

Sun Y S, Zhang Z R. Servo forming technology and its several developing trends [J]. Forging & Stamping Technology, 2022, 47(1): 1-16.

[6]  Bowden F P, Moore A J W, Tabor D. The ploughing and adhesion of sliding metals [ J]. Journal of Applied Physics, 1943, 14(2): 80-91.

[7]  Bowden F P, Gregory J N, Tabor D. Lubrication of metal surfaces by fatty acids [J]. Nature, 1945, 156 (3952): 97-101.

[8]  铁争鸣. 基于响应面法的幅板冲压成形模具磨损[J]. 锻压技术, 2021, 46 (5): 174-178.

Tie Z M. Wear of stamping mould for shield based on response surface method [ J]. Forging & Stamping Technology, 2021, 46(5): 174-178.

[9]  Tröber P, Welm M, Weiss H A, et al. Temperature, thermoelectric current and adhesion formation during deep drawing [ J]. Wear, 2021, 477: 203839.

[10] 温俊杰. 毛坯形状及压边力对方盒形件拉深粘模行为的影响[D]. 长沙: 湘潭大学, 2019.

Wen J J. Effect of Blank Shape and Blank Holder Force on the Galling Behavior in Square Cup Drawing Produce [D]. Changsha:Xiangtan University, 2019.

[11] 续海峰. 粘着磨损机理及其分析[ J]. 机械管理开发,2007, (S1): 95-96, 98.

Xu H F. Adhesion wear mechanism and analysis [J]. Mechanical Management and Development, 2007, (S1): 95-96, 98.

[12] 熊垒, 林有希. 模拟仿真技术在磨损预测中的应用现状[J]. 机械制造与自动化, 2013, 42 (5): 116-119.

Xiong L, Lin Y X. Research progress of analogue simulation in the wear prediction [J]. Machine Building & Automation, 2013, 42

(5): 116-119.

[13] Ninshu Ma, Nobuhiko Sugitomo. Development and application of non-linear friction models for metal forming simulation [J]. Optimization

and Engineering, 2011, (12): 382-389.

[14] 董文正, 林启权, 王志刚. 基于FEM-Archard 模型的高强钢冲压成形粘模行为评估[J]. 材料科学与工艺, 2015, 23(3): 35-38.

Dong W Z, Lin Q Q, Wang Z G. On the galling behavior in HSS sheet metal forming process by FEM-Archard model [J]. Materials Science & Technology, 2015, 23 (3): 35-38.

[15] Aghababaei R, Zhao K. Micromechanics of material detachment during adhesive wear: A numerical assessment of Archard′s wear model[J]. Wear, 2021, 476: 203739.

[16] Marchin N, Ashrafizadeh F. Effect of carbon addition on tribological performance of TiSiN coatings produced by cathodic arc physical vapour deposition [ J]. Surface and Coatings Technology, 2020, 407: 126781.

[17] 林启权, 彭大暑, 王志刚, 等. 高强度钢板方盒形件拉深粘模行为[J]. 中南大学学报: 自然科学版, 2009, 40 (6):1529-1534.

Lin Q Q, Peng D S, Wang Z G, et al. Deep drawing sticking behavior of high-strength steel plate square box-shaped parts [J]. Journal of Central South University: Natural Science Edition,

2009, 40 (6): 1529-1534.

[18] 刘浩, 陈再良, 王昌儒. 钽板的冲杯实验和拉深实验研究[J]. 锻压技术, 2019, 44 (6): 150-153.

Liu H, Chen Z L, Wang C R. Research on cupping test and drawing test of tantalum sheet [J]. Forging & Stamping Technology,2019, 44 (6): 150-153.

[19] Wang C, Chen J. Experimental and numerical investigations of wear resistance characteristics of XCr13 during advanced highstrength steel stamping [J]. Journal of Materials Engineering and Performance, 2021, 30 (6): 4484-4493.

[20] Xu F S, Deng Y L, Zhang J, et al. Influence of fillet-radius and lubrication on stamping quality of multi-recessed aluminum panels[A]. Mechanics and Materials Science: Proceedings of the 2016 International Conference on Mechanics and Materials Science[C]. Guangzhou: World Scientific, 2018.

[21] Trzepiecinski T. Polynomial multiple regression analysis of the lubrication effectiveness of deep drawing quality steel sheets by ecofriendly vegetable oils [J]. Materials, 2022, 15 (3): 1-18.

[22] 杨成康, 程晓农, 张洁, 等. W-Mo-V 改进型H13 模具钢的力学性能与磨损行为[ J]. 金属热处理, 2021, 46 (4):30-37.  

Yang C K, Cheng X N, Zhang J, et al. Mechanical properties and wear behavior of W-Mo-V modified H13 tool steel [ J]. Heat Treatment of Metals, 2021, 46 (4): 30-37.

[23] 张松泓, 徐颖若. 基于响应面法发动机连杆热锻模具磨损失效分析[J]. 锻压技术, 2021, 46 (7): 178-184.

Zhang S H, Xu Y R. Analysis on wear failure of hot forging die for engine connecting rod based on response surface method [ J].Forging & Stamping Technology, 2021, 46 (7): 178-184.

[24] 谢晖, 李江曼, 王诗恩, 等. 超高强钢板冲压模具磨损CAE分析研究与应用[J]. 湖南大学学报: 自然科学版, 2015,42 (8): 15-21.

Xie H, Li J M, Wang S E, et al. Research and application of die wear CAE analysis of ultra high strength steel stamping [J]. Journal of Hunan University: Natural Sciences, 2015, 42 (8): 15-21.

[25] 曲雪苓. 基于Simufact Forming 的涡轮叶片热锻模具磨损计算机仿真分析[J]. 热加工工艺, 2018, 47 (21): 196-198, 202.

Qu X L. Computer simulation analysis on wear of hot forging die for turbineblade based on Simufact Forming [J]. Hot Working Technology, 2018, 47 (21): 196-198, 202.

[26] Flegler F, Groche P, Abraham T, et al. Dry deep drawing of aluminum and the influence of sheet metal roughness [ J]. JOM, 2020, 72 (7): 2511-2516.

[27] Phanitwong W, Thipprakmas S. Multi draw radius die design for increases in limiting drawing ratio [J]. Metals, 2020, 10 (7):1-17.

[28] 陈杰. H13 钢表面磨损行为的数值模拟研究及模具寿命预测[D]. 长春: 吉林大学, 2015.

Chen J. Numerical Simulation Research on Surface Wear Behavior of H13 Steel and Prediction of the Mould Life [D]. Changchun:Jilin University, 2015.

[29] 周文兵. 基于滚动调度的冲压模具磨损数值模拟分析[J].佳木斯大学学报: 自然科学版, 2020, 38 (4): 109- 112,116.

Zhou W B. Numerical simulation analysis of stamping mould wear based on rolling scheduling [J]. Journal of Jiamusi University: Natural Science Edition, 2020, 38 (4): 109-112, 116.

[30] 熊英超, 夏琴香, 叶福源, 等. 多工位级进模冲裁工序模具磨损行为的数值分析及寿命预测[ J]. 精密成形工程,2017, 9 (3): 89-93.

Xiong Y C, Xia Q X, Ye F Y, et al. Numerical analysis and life prediction of die wear behavior in multi-position progressive die blanking [J]. Journal of Netshape Forming Engineering, 2017, 9(3): 89-93.

[31] Del Prete A, Primo T. Sheet metal forming optimization methodology

[32] 张永帅, 苏倩辉, 刘洪河, 等. 伺服压力机的技术应用及发展趋势[J]. 锻造与冲压, 2019, (16): 54-56.

Zhang Y S, Su Q H, Liu H H, et al. Technical application and development trend of servo press [J]. Forging & Metalforming,2019, (16): 54-56.

[33] Amada Co. , Ltd. http: / / www. amada. co. jp/ english/ .

[34] 李健. 基于ARM 的伺服压力机拉深曲线的控制研究[D].武汉: 华中科技大学, 2019.

Li J. Research on Control of Drawing Curve of Servo Press Based on ARM [D]. Wuhan: Huazhong University of Science and Technology,2019.

[35] 房欢欢, 杨帅军, 穆宏. 曲线仿真在伺服冲压线生产中的应用[J]. 锻造与冲压, 2021, (14): 32-37.

Fang H H, Yang S J, Mu H. Application of curve simulation on the servo press production line [ J]. Forging & Metalforming,2021, (14): 32-37.

[36] 尚万峰, 赵升吨. 伺服压力机加工工艺的Bezier 模型及其优化研究[J]. 西安交通大学学报, 2012, 46 (3): 31-35.

Shang W F, Zhao S T. Servo press processing Bezier-model with optimum [ J]. Journal of Xi′an Jiaotong University, 2012, 46(3): 31-35.

[37] 陈岳云, 郭为忠, 高峰. 基于NURBS 曲线的伺服压力机冲压过程建模与加工工艺轨迹规划[J]. 上海交通大学报,2009, 43 (1): 138-142.

Chen Y Y, Guo W Z, Gao F. NURBS-based feature modeling and trajectory planning for ram motion of servo mechanical presses [J].Journal of Shanghai Jiaotong University, 2009, 43 (1): 138-142.

[38] Shi M. Rational Bézier curves approximated by Bernstein-Jacobi hybrid polynomial curves [J]. Computational and Applied Mathematics,2020, 39 (3): 1-15.

[39] Jin Y, Zhao S, Wang Y. An optimal feed interpolator based on G2 continuous Bézier curves for high-speed machining of linear tool path [J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-10.

[40] 殷强, 刘冬, 汪建余. 基于伺服压力机生产线的曲线模拟工作研究[J]. 锻造与冲压, 2020, (22): 20-22.

Yin Q, Liu D, Wang J Y. Research on curve simulation of servo press production line [J]. Forging & Metalforming, 2020, (22):20-22.

[41] 王俊, 李明. 基于工艺要求的伺服压机行程曲线优化[J].机械设计与制造工程, 2014, 43 (3): 10-14.

Wang J, Li M. The optimization of servo press stroke curve based on process requirements [J]. Machine Design and Manufacturing Engineering, 2014, 43 (3): 10-14.

[42] 徐李娜. 肘杆式伺服机械压力机冲压工艺特征曲线研究[D]. 广州: 广东工业大学, 2012.

Xu L N. Research on Stamping Process Characteristic Curves of the Elbow Pole Type Servo Mechanical Press [ D]. Guangzhou:Guangdong University of Technology, 2012.

[43] 施于庆, 管爱枝. 变凸模运动曲线对板料成形极限性能的影响[J]. 浙江科技学院学报, 2014, 26 (5): 321-326.

Shi Y Q, Guan A Z. Influences of variable die motion curves on limited forming property of sheet metal [J]. Journal of Zhejiang University of Science and Technology, 2014, 26 (5): 321-326.

[44] 常琛扬, 翟敬梅, 夏琴香, 等. 基于伺服压力机的凸缘筒形件拉深成形数值分析[A]. 第五届锻压装备与制造技术论坛九届二次学术交流会议论集[C]. 广州: 中国机械工程学会, 2011.

Chang C Y, Zhai J M, Xia Q X, et al. Numerical analysis of deep drawing process for cylindrical cup with flange based on servo-press [A]. Proceedings of the Ninth Second Academic Exchange Conference of the Fifth Forum on Forging Equipment and Manufacturing Technology [C]. Guangzhou: Chinese Mechanical EngineeringSociety, 2011.

[45] 朱梅云, 傅建, 王玥, 等. 上盖板冲压成形中的缺陷分析与数值模拟[J]. 塑性工程学报, 2009, 16 (6): 68-71, 90.

Zhu M Y, Fu J, Wang Y, et al. Defect analysis and numerical simulation for the upper cover plate drawing [J]. Journal of Plasticity Engineering, 2009, 16 (6): 68-71, 90.

[46] 喻建军. 基于伺服压力机冲压速度对板料成形性的影响[D]. 合肥: 合肥工业大学, 2013.

Yu J J. The Influence of Stamping Speed Based on Servo Press on Sheet Metal Formability [D]. Hefei: Hefei University of Technology, 2013.

[47] Kuo C C, Huang H L, Li T C, et al. Optimization of the pulsating curve for servo stamping of rectangular cup [J]. Journal of Manufacturing Processes, 2020, 56: 990-1000.

[48] Bang J, Park N, Song J, et al. Tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated U-bending based wear test [J]. Metals-Open Access Metallurgy Journal, 2021, 11 (2): 1-20.

[49] Chen D C, Yeh Y K. Using finite element analysis to discuss the study of drawing of servo stamping curve [J]. Advances in Mechanical Engineering, 2021, 13 (11): 1-11.

[50] 张在房, 徐冯, 孙习武. 火箭贮箱箱底充液拉深成形工艺的多目标优化[J]. 机械工程学报, 2022, 58 (5): 78-86.

Zhang Z F, Xu F, Sun X W. Multi-objective optimization of hydroforming process of rocket tank bottom [J]. Journal of Mechanical Engineering, 2022, 58 (5): 78-86.

[51] 王苏静, 邓沛然, 宣守强. 6061 高强度铝合金拉深工艺参数优化[J]. 模具工业, 2021, 47 (2): 6-10.

Wang S J, Deng P R, Xuan S Q. Optimization of drawing parameters for 6061 high strength aluminum alloy [J]. Die & Mould Industry, 2021, 47 (2): 6-10.

[52] 施为钟, 龚红英, 姜天亮, 等. 基于Dynaform 和响应面法的带凸缘圆筒件拉深工艺优化[J]. 上海工程技术大学学报, 2020, 34 (2): 168-173.

Shi W Z, Gong H Y, Jiang T L, et al. Drawing process optimization of cylinder with flangebased on Dynaform and response surface method [J]. Journal of Shanghai University of Engineering Science, 2020, 34(2):168-173

 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9