[1] Atul S T, Babu M C L. A review on effect of thinning, wrinkling and spring-back on deep drawing process [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233 (4): 1011-1036.
[2] 李欣芮, 王晓康, 何万飞. 不锈钢制件拉深成形防粘结瘤的研究[J]. 模具工业, 2020, 46 (5): 61-65.
Li X R, Wang X K, He W F. Study on avoiding seizing tumor on die parts in drawing process of stainless steel parts [J]. Die & Mould Industry, 2020, 46 (5): 61-65.
[3] 林启权. 汽车用高强度钢板拉深多尺度粘模机制研究[A].第十二届设计与制造前沿国际会议[C]. 沈阳: 国家自然科学基金委员会, 2016.
Lin Q Q. Research on the multi-scale die sticking mechanism in deep drawing of high-strength steel plates for automobiles [A]. The 12th International Conference on Frontiers in Design and Manufacturing [C]. Shenyang: National Natural Science Foundation of China, 2016.
[4] 吴亮. 汽车用铝合金结构件冲压模具磨损仿真研究[J]. 锻压技术, 2021, 46 (11): 155-159.
Wu L. Simulation study on wear of stamping die for aluminum alloy structural parts of automobile [J]. Forging & Stamping Technology,2021, 46 (11): 155-159.
[5] 孙友松, 章争荣. 伺服成形技术及其若干发展动向[J]. 锻压技术, 2022, 47 (1): 1-16.
Sun Y S, Zhang Z R. Servo forming technology and its several developing trends [J]. Forging & Stamping Technology, 2022, 47(1): 1-16.
[6] Bowden F P, Moore A J W, Tabor D. The ploughing and adhesion of sliding metals [ J]. Journal of Applied Physics, 1943, 14(2): 80-91.
[7] Bowden F P, Gregory J N, Tabor D. Lubrication of metal surfaces by fatty acids [J]. Nature, 1945, 156 (3952): 97-101.
[8] 铁争鸣. 基于响应面法的幅板冲压成形模具磨损[J]. 锻压技术, 2021, 46 (5): 174-178.
Tie Z M. Wear of stamping mould for shield based on response surface method [ J]. Forging & Stamping Technology, 2021, 46(5): 174-178.
[9] Tröber P, Welm M, Weiss H A, et al. Temperature, thermoelectric current and adhesion formation during deep drawing [ J]. Wear, 2021, 477: 203839.
[10] 温俊杰. 毛坯形状及压边力对方盒形件拉深粘模行为的影响[D]. 长沙: 湘潭大学, 2019.
Wen J J. Effect of Blank Shape and Blank Holder Force on the Galling Behavior in Square Cup Drawing Produce [D]. Changsha:Xiangtan University, 2019.
[11] 续海峰. 粘着磨损机理及其分析[ J]. 机械管理开发,2007, (S1): 95-96, 98.
Xu H F. Adhesion wear mechanism and analysis [J]. Mechanical Management and Development, 2007, (S1): 95-96, 98.
[12] 熊垒, 林有希. 模拟仿真技术在磨损预测中的应用现状[J]. 机械制造与自动化, 2013, 42 (5): 116-119.
Xiong L, Lin Y X. Research progress of analogue simulation in the wear prediction [J]. Machine Building & Automation, 2013, 42
(5): 116-119.
[13] Ninshu Ma, Nobuhiko Sugitomo. Development and application of non-linear friction models for metal forming simulation [J]. Optimization
and Engineering, 2011, (12): 382-389.
[14] 董文正, 林启权, 王志刚. 基于FEM-Archard 模型的高强钢冲压成形粘模行为评估[J]. 材料科学与工艺, 2015, 23(3): 35-38.
Dong W Z, Lin Q Q, Wang Z G. On the galling behavior in HSS sheet metal forming process by FEM-Archard model [J]. Materials Science & Technology, 2015, 23 (3): 35-38.
[15] Aghababaei R, Zhao K. Micromechanics of material detachment during adhesive wear: A numerical assessment of Archard′s wear model[J]. Wear, 2021, 476: 203739.
[16] Marchin N, Ashrafizadeh F. Effect of carbon addition on tribological performance of TiSiN coatings produced by cathodic arc physical vapour deposition [ J]. Surface and Coatings Technology, 2020, 407: 126781.
[17] 林启权, 彭大暑, 王志刚, 等. 高强度钢板方盒形件拉深粘模行为[J]. 中南大学学报: 自然科学版, 2009, 40 (6):1529-1534.
Lin Q Q, Peng D S, Wang Z G, et al. Deep drawing sticking behavior of high-strength steel plate square box-shaped parts [J]. Journal of Central South University: Natural Science Edition,
2009, 40 (6): 1529-1534.
[18] 刘浩, 陈再良, 王昌儒. 钽板的冲杯实验和拉深实验研究[J]. 锻压技术, 2019, 44 (6): 150-153.
Liu H, Chen Z L, Wang C R. Research on cupping test and drawing test of tantalum sheet [J]. Forging & Stamping Technology,2019, 44 (6): 150-153.
[19] Wang C, Chen J. Experimental and numerical investigations of wear resistance characteristics of XCr13 during advanced highstrength steel stamping [J]. Journal of Materials Engineering and Performance, 2021, 30 (6): 4484-4493.
[20] Xu F S, Deng Y L, Zhang J, et al. Influence of fillet-radius and lubrication on stamping quality of multi-recessed aluminum panels[A]. Mechanics and Materials Science: Proceedings of the 2016 International Conference on Mechanics and Materials Science[C]. Guangzhou: World Scientific, 2018.
[21] Trzepiecinski T. Polynomial multiple regression analysis of the lubrication effectiveness of deep drawing quality steel sheets by ecofriendly vegetable oils [J]. Materials, 2022, 15 (3): 1-18.
[22] 杨成康, 程晓农, 张洁, 等. W-Mo-V 改进型H13 模具钢的力学性能与磨损行为[ J]. 金属热处理, 2021, 46 (4):30-37.
Yang C K, Cheng X N, Zhang J, et al. Mechanical properties and wear behavior of W-Mo-V modified H13 tool steel [ J]. Heat Treatment of Metals, 2021, 46 (4): 30-37.
[23] 张松泓, 徐颖若. 基于响应面法发动机连杆热锻模具磨损失效分析[J]. 锻压技术, 2021, 46 (7): 178-184.
Zhang S H, Xu Y R. Analysis on wear failure of hot forging die for engine connecting rod based on response surface method [ J].Forging & Stamping Technology, 2021, 46 (7): 178-184.
[24] 谢晖, 李江曼, 王诗恩, 等. 超高强钢板冲压模具磨损CAE分析研究与应用[J]. 湖南大学学报: 自然科学版, 2015,42 (8): 15-21.
Xie H, Li J M, Wang S E, et al. Research and application of die wear CAE analysis of ultra high strength steel stamping [J]. Journal of Hunan University: Natural Sciences, 2015, 42 (8): 15-21.
[25] 曲雪苓. 基于Simufact Forming 的涡轮叶片热锻模具磨损计算机仿真分析[J]. 热加工工艺, 2018, 47 (21): 196-198, 202.
Qu X L. Computer simulation analysis on wear of hot forging die for turbineblade based on Simufact Forming [J]. Hot Working Technology, 2018, 47 (21): 196-198, 202.
[26] Flegler F, Groche P, Abraham T, et al. Dry deep drawing of aluminum and the influence of sheet metal roughness [ J]. JOM, 2020, 72 (7): 2511-2516.
[27] Phanitwong W, Thipprakmas S. Multi draw radius die design for increases in limiting drawing ratio [J]. Metals, 2020, 10 (7):1-17.
[28] 陈杰. H13 钢表面磨损行为的数值模拟研究及模具寿命预测[D]. 长春: 吉林大学, 2015.
Chen J. Numerical Simulation Research on Surface Wear Behavior of H13 Steel and Prediction of the Mould Life [D]. Changchun:Jilin University, 2015.
[29] 周文兵. 基于滚动调度的冲压模具磨损数值模拟分析[J].佳木斯大学学报: 自然科学版, 2020, 38 (4): 109- 112,116.
Zhou W B. Numerical simulation analysis of stamping mould wear based on rolling scheduling [J]. Journal of Jiamusi University: Natural Science Edition, 2020, 38 (4): 109-112, 116.
[30] 熊英超, 夏琴香, 叶福源, 等. 多工位级进模冲裁工序模具磨损行为的数值分析及寿命预测[ J]. 精密成形工程,2017, 9 (3): 89-93.
Xiong Y C, Xia Q X, Ye F Y, et al. Numerical analysis and life prediction of die wear behavior in multi-position progressive die blanking [J]. Journal of Netshape Forming Engineering, 2017, 9(3): 89-93.
[31] Del Prete A, Primo T. Sheet metal forming optimization methodology
[32] 张永帅, 苏倩辉, 刘洪河, 等. 伺服压力机的技术应用及发展趋势[J]. 锻造与冲压, 2019, (16): 54-56.
Zhang Y S, Su Q H, Liu H H, et al. Technical application and development trend of servo press [J]. Forging & Metalforming,2019, (16): 54-56.
[33] Amada Co. , Ltd. http: / / www. amada. co. jp/ english/ .
[34] 李健. 基于ARM 的伺服压力机拉深曲线的控制研究[D].武汉: 华中科技大学, 2019.
Li J. Research on Control of Drawing Curve of Servo Press Based on ARM [D]. Wuhan: Huazhong University of Science and Technology,2019.
[35] 房欢欢, 杨帅军, 穆宏. 曲线仿真在伺服冲压线生产中的应用[J]. 锻造与冲压, 2021, (14): 32-37.
Fang H H, Yang S J, Mu H. Application of curve simulation on the servo press production line [ J]. Forging & Metalforming,2021, (14): 32-37.
[36] 尚万峰, 赵升吨. 伺服压力机加工工艺的Bezier 模型及其优化研究[J]. 西安交通大学学报, 2012, 46 (3): 31-35.
Shang W F, Zhao S T. Servo press processing Bezier-model with optimum [ J]. Journal of Xi′an Jiaotong University, 2012, 46(3): 31-35.
[37] 陈岳云, 郭为忠, 高峰. 基于NURBS 曲线的伺服压力机冲压过程建模与加工工艺轨迹规划[J]. 上海交通大学报,2009, 43 (1): 138-142.
Chen Y Y, Guo W Z, Gao F. NURBS-based feature modeling and trajectory planning for ram motion of servo mechanical presses [J].Journal of Shanghai Jiaotong University, 2009, 43 (1): 138-142.
[38] Shi M. Rational Bézier curves approximated by Bernstein-Jacobi hybrid polynomial curves [J]. Computational and Applied Mathematics,2020, 39 (3): 1-15.
[39] Jin Y, Zhao S, Wang Y. An optimal feed interpolator based on G2 continuous Bézier curves for high-speed machining of linear tool path [J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 1-10.
[40] 殷强, 刘冬, 汪建余. 基于伺服压力机生产线的曲线模拟工作研究[J]. 锻造与冲压, 2020, (22): 20-22.
Yin Q, Liu D, Wang J Y. Research on curve simulation of servo press production line [J]. Forging & Metalforming, 2020, (22):20-22.
[41] 王俊, 李明. 基于工艺要求的伺服压机行程曲线优化[J].机械设计与制造工程, 2014, 43 (3): 10-14.
Wang J, Li M. The optimization of servo press stroke curve based on process requirements [J]. Machine Design and Manufacturing Engineering, 2014, 43 (3): 10-14.
[42] 徐李娜. 肘杆式伺服机械压力机冲压工艺特征曲线研究[D]. 广州: 广东工业大学, 2012.
Xu L N. Research on Stamping Process Characteristic Curves of the Elbow Pole Type Servo Mechanical Press [ D]. Guangzhou:Guangdong University of Technology, 2012.
[43] 施于庆, 管爱枝. 变凸模运动曲线对板料成形极限性能的影响[J]. 浙江科技学院学报, 2014, 26 (5): 321-326.
Shi Y Q, Guan A Z. Influences of variable die motion curves on limited forming property of sheet metal [J]. Journal of Zhejiang University of Science and Technology, 2014, 26 (5): 321-326.
[44] 常琛扬, 翟敬梅, 夏琴香, 等. 基于伺服压力机的凸缘筒形件拉深成形数值分析[A]. 第五届锻压装备与制造技术论坛九届二次学术交流会议论集[C]. 广州: 中国机械工程学会, 2011.
Chang C Y, Zhai J M, Xia Q X, et al. Numerical analysis of deep drawing process for cylindrical cup with flange based on servo-press [A]. Proceedings of the Ninth Second Academic Exchange Conference of the Fifth Forum on Forging Equipment and Manufacturing Technology [C]. Guangzhou: Chinese Mechanical EngineeringSociety, 2011.
[45] 朱梅云, 傅建, 王玥, 等. 上盖板冲压成形中的缺陷分析与数值模拟[J]. 塑性工程学报, 2009, 16 (6): 68-71, 90.
Zhu M Y, Fu J, Wang Y, et al. Defect analysis and numerical simulation for the upper cover plate drawing [J]. Journal of Plasticity Engineering, 2009, 16 (6): 68-71, 90.
[46] 喻建军. 基于伺服压力机冲压速度对板料成形性的影响[D]. 合肥: 合肥工业大学, 2013.
Yu J J. The Influence of Stamping Speed Based on Servo Press on Sheet Metal Formability [D]. Hefei: Hefei University of Technology, 2013.
[47] Kuo C C, Huang H L, Li T C, et al. Optimization of the pulsating curve for servo stamping of rectangular cup [J]. Journal of Manufacturing Processes, 2020, 56: 990-1000.
[48] Bang J, Park N, Song J, et al. Tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated U-bending based wear test [J]. Metals-Open Access Metallurgy Journal, 2021, 11 (2): 1-20.
[49] Chen D C, Yeh Y K. Using finite element analysis to discuss the study of drawing of servo stamping curve [J]. Advances in Mechanical Engineering, 2021, 13 (11): 1-11.
[50] 张在房, 徐冯, 孙习武. 火箭贮箱箱底充液拉深成形工艺的多目标优化[J]. 机械工程学报, 2022, 58 (5): 78-86.
Zhang Z F, Xu F, Sun X W. Multi-objective optimization of hydroforming process of rocket tank bottom [J]. Journal of Mechanical Engineering, 2022, 58 (5): 78-86.
[51] 王苏静, 邓沛然, 宣守强. 6061 高强度铝合金拉深工艺参数优化[J]. 模具工业, 2021, 47 (2): 6-10.
Wang S J, Deng P R, Xuan S Q. Optimization of drawing parameters for 6061 high strength aluminum alloy [J]. Die & Mould Industry, 2021, 47 (2): 6-10.
[52] 施为钟, 龚红英, 姜天亮, 等. 基于Dynaform 和响应面法的带凸缘圆筒件拉深工艺优化[J]. 上海工程技术大学学报, 2020, 34 (2): 168-173.
Shi W Z, Gong H Y, Jiang T L, et al. Drawing process optimization of cylinder with flangebased on Dynaform and response surface method [J]. Journal of Shanghai University of Engineering Science, 2020, 34(2):168-173
|