网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5A06 铝合金环形连接框等温模锻坯料设计及工艺验证
英文标题:Design on isothermal die forging billet for 5A06 aluminum alloy ring connecting frame and process validation
作者:王 斌1  王琪伟2  宗影影2  杨志伟3  刘章光1  李 升1 
单位:1. 北京星航机电装备有限公司  2. 哈尔滨工业大学  3. 空装驻北京地区第二军代室 
关键词:铝合金  环形连接框  等温模锻  折叠  成形速度 
分类号:TG316. 3
出版年,卷(期):页码:2023,48(1):29-46
摘要:

 利用Deform 有限元模拟软件研究了5A06 铝合金环形连接框的成形过程, 建立了立筋折叠形成过程模型, 分析了坯料形状尺寸对筋顶折叠、成形速度均匀性和成形速度的影响规律, 并进行了工艺验证。结果表明: 对于与锻件随形的坯料, 顶部折叠容易在成形速度快的位置产生; 坯料轮廓尺寸减小时, 锻件筋部成形速度和整体成形速度的均匀性均会下降, 腹板处的等效应变增大, 筋顶折叠程度在成形速度快且平直的筋处变化不大, 在成形速度慢的筋处降低, 拐折筋处的筋顶折叠程度则会由于侧壁流动现象而加剧。对于成形速度慢且存在拐折的位置, 成形速度慢对折叠程度的降低和侧壁流动对折叠程度的加剧这两种影响相互竞争, 侧壁流动现象的影响会随着坯料边缘到模具外侧壁的距离增大而逐渐占优, 加剧折叠。

 The forming process of 5A06 aluminum alloy ring connecting frame was studied by finite element simulation software Deform,and the forming process model of vertical rib folding was established. Then, the influence laws of shape and size for billet on rib top folding, forming speed uniformity and forming speed were analyzed, and the process verification was carried out. The results show that the top folding is easy to occur at the position of high forming speed for billet with the same shape as the forgings. With the decreasing of billet contour size, the uniformity for the forming speed of forgings rib and the overall forming speed reduce, the equivalent strain at the web increases, the folding degree of rib top does not change much at the position with fast forming speed and straight rib, but decreases at the rib with slow forming speed, and the folding degree of rib top at the turning rib is intensified due to the flow phenomenon of side wall. For the position with slow forming speed and inflection, the two influences of the slow forming speed resulting in the reduction of folding degree and the side wall flow resulting in the aggravation of folding degree compete with each other. The influence of the side wall flow phenomenon gradually dominates with the increasing of the distance between billet edge and outer wall of die, which aggravates the folding.

基金项目:
作者简介:
作者简介: 王 斌(1976-), 男, 博士, 研究员 E-mail: 15601287047@ 163. com 通信作者: 宗影影(1980-), 女, 博士, 教授 E-mail: hagongda@ hit. edu. cn
参考文献:

 [1]  黄晓艳, 刘波. 轻合金是武器装备轻量化的首选金属材料[J]. 轻合金加工技术, 2007, 35 (1): 12-15.


Huang X Y, Liu B. Light alloy is the preferred metal material for lightweight weapon equipment [J]. Light Alloy Processing Technology,2007, 35 (1): 12-15.

[2]  管仁国, 娄花芬, 黄晖, 等. 铝合金材料发展现状、趋势及展望[J]. 中国工程科学, 2020, 22 (5): 68-75.

Guan R G, Lou H F, Huang H, et al. Development status, trend and prospect of aluminum alloy, materials [J]. China Engineering Science, 2020, 22 (5): 68-75.

[3]  石婵. 5A06 铝合金板材温成形本构及损伤研究[D]. 武汉:华中科技大学, 2019.

Shi C. Study on Constitutive and Damage of 5A06 Aluminum Alloy Sheet during Warm Forming [D]. Wuhan: Huazhong University of Science and Technology, 2019.

[4]  杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 2: 76-80.

Yang S J, Dai S L. Review and prospect of aviation aluminum alloys [J]. Material Guide, 2005, 2: 76-80.

[5]  任杰. 5A06 铝合金底座挤压成形工艺研究[D]. 太原: 中北大学, 2013.

Ren J. Study on Extrusion Forming Process of 5A06 Aluminum Alloy Base [D]. Taiyuan: Zhongbei University, 2013.

[6]  秦高科. 铝合金壳体异形件温挤压成形工艺优化[D]. 太原:中北大学, 2009.

Qin G K. Optimization of Warm Extrusion Forming Process forSpecial-shaped Parts of Aluminum Alloy Shell [ D]. Taiyuan:Zhongbei University, 2009.

[7]  张亚蕊. 多层薄壁筒形件热挤压成型工艺及模拟研究[D].武汉: 华中科技大学, 2007.

Zhang Y R. Study on Hot Extrusion Process and Simulation of Multi-layer Thin-walled Cylindrical Parts [D]. Wuhan: Huazhong University of Science and Technology, 2007.

[8]  张利军, 常辉, 薛祥义. 等温锻造技术及其在航空工业中的应用[J]. 热加工工艺, 2010, 39 (21): 21-24.

Zhang L J, Chang H, Xue X Y. Isothermal forging technology and its application in aviation industry [ J]. Hot Working Process, 2010, 39 (21): 21-24.

[9]  Guo X L, Dong D, Su S W, et al. Hot extrusion precision forming research on 5A06 aluminum alloy pedestal [J]. Aerospace Manufacturing Technology, 2019, (1): 27-31.

[10] 于忠奇, 王凤琪, 戴冬华, 等. 带筋薄壁筒体类构件流动旋压技术研究进展[J]. 塑性工程学报, 2021, 28 (8): 1-10.

Yu Z Q, Wang F Q, Dai D H, et al. A review of flow spinning technology of stiffened thin-walled cylinders [J]. Journal of Plasticity Engineering, 2021, 28 (8): 1-10.

[11] 郭拉凤, 郭熠, 李彩霞, 等. 挤压工艺参数对Al-W 合金致密化和硬度的影响[J]. 塑性工程学报, 2021, 28 (8): 11-17.

Guo L F, Guo Y, Li C X, et al. Effect of extrusion process parameters on densification and hardness of Al-W alloy [J]. Journal of Plasticity Engineering, 2021, 28 (8): 11-17.

[12] 赵新海, 赵国群, 王广春. 金属体积成形预成形设计的现状及发展[J]. 塑性工程学报, 2000, 7 (3): 1-6.

Zhao X H, Zhao G Q, Wang G C. Present situation and development of preform design for metal bulk forming [ J]. Journal of Plastic Engineering, 2000, 7 (3): 1-6.

[13] 阮湖斌, 胡道春, 罗泽威, 等. 6082 铝合金散热器精锻工艺分析及模具设计[J]. 锻压装备与制造技术, 2016, 51 (2):101-103.

Ruan H B, Hu D C, Luo Z W, et al. Precision forging process analysis and die design of 6082 aluminum alloy radiator [J]. Forging Equipment and Manufacturing Technology, 2016, 51 (2):

101-103.

[14] 周杰, 王泽文, 徐戊矫. 汽车铝合金转向节臂锻造成形过程的数值模拟和实验研究[J]. 热加工工艺, 2010, 39 (3): 85-87.

Zhou J, Wang Z W, Xu W J. Numerical simulation and experimental study on forging process of automotive aluminum alloy steering knuckle arm [J]. Hot Working Process, 2010, 39 (3): 85-87.

[15] 林启权, 李应明, 王振球. 2519 铝合金管材热挤压过程的数值模拟[J]. 机械工程材料, 2007, 31 (12): 79-82.

Lin Q Q, Li Y M, Wang Z Q. Numerical simulation of hot extrusion process of 2519 aluminum alloy pipe [J]. Mechanical Engineering Materials, 2007, 31 (12): 79-82.

[16] 廖旭, 周杰, 宋立群, 等. 预压对大型铝合金壳锻件成形的影响[J]. 塑性工程学报, 2007, 14 (5): 71-75.

Liao X, Zhou J, Song L Q, et al. Effect of preloading on the forming of large aluminum alloy shell forgings [J]. Journal of Plastic Engineering, 2007, 14 (5): 71-75.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9