[1] 王存宇, 杨洁, 常颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54 (2): 1-6.
Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [ J]. Iron & Steel, 2019, 54 (2): 1-6.
[2] 马廷涛, 庄厚川, 金科, 等. 高强钢材料车身轻量化研究[J]. 汽车工艺与材料, 2019, (5): 1-5, 11.
Ma T T, Zhuang H C, Jin K, et al. Research on lightweight of high-strength steel body [J]. AT&M, 2019, (5): 1-5, 11.
[3] 李扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25 (13): 101 - 104,109.
Li Y, Liu H W, Du Y H, et al. Application and development of AHSS in automobile industry [ J]. Materials Review, 2011, (13): 101-104, 109.
[4] 程威. 车身超高强钢热成形件冲压工艺及模具结构可靠性优化设计研究[D]. 长沙: 湖南大学, 2019.
Cheng W. Research on Process and Structure of Car Body Ultra High Strength Steel Hot-stamped Part and Hot-stamping Die Based on Reliability Optimization Method [D]. Changsha: Hunan University, 2019.
[5] Karbasian H, Tekkaya A E. A review on hot stamping [J]. Journal of Materials Processing Technology, 2010, 210 (15): 2103-2118.
[6] Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultrahigh strength steel parts [J]. CIRP Annals, 2017, 66 (2): 755-777.
[7] Li N, Lin J, Balint D S, et al. Modelling of austenite formation during heating in boron steel hot stamping processes [J]. Journal of Materials Processing Technology, 2016, 237: 394-401.
[8] Han S, Wang Z, Wang Z, et al. Heat-assisted hole-clinching process for joining magnesium alloy and ultra-high-strength steel [J]. The International Journal of Advanced Manufacturing Technology, 2021, 115 (1): 551-561.
[9] Liang J X, Wang Y C, Cheng X W, et al. Microstructure and mechanical properties of a Cr-Ni-W-Mo steel processed by thermo-mechanical controlled processing [J]. Journal of Iron and Steel Research International, 2021, 28 (6): 713-721.
[10] Ghosh S, Miettune N I, Somani M C, et al. Nanolath martensiteaustenite structures engineered through DQ&P processing for developing tough, ultrahigh strength steels [J]. Materials Today: Proceedings, 2021, 46 (P6): 2131-2134.
[11] 胡健, 陈泽中, 刘涛, 等. 车门防撞梁热成形工艺优化仿真与试验[J]. 中国机械工程, 2021, 32 (1): 92-100.
Hu J, Chen Z Z, Liu T, et al. Simulation and tests on hot forming process optimization for door anti-collision beams [J]. China Mechanical Engineering, 2021, 32 (1): 92-100.
[12] 梁江涛. 2000 MPa 级热成形钢的强韧化机制及应用技术研究 [D]. 北京: 北京科技大学, 2019.
Liang J T. Strengthen-toughening Mechanism and ApplicationTechnology of 2000 MPa Grade Hot Stamping Steel [D]. Beijing: University of Science and Technology Beijing, 2019.
[13] Billur E, Cetin B, Gurleyik M. New generation advanced high strength steels: Developments, trends and constraints [J]. International Journal of Scientific and Technological Research, 2016, 1(2): 50-62.
[14] Lechler J, Merklein M, Geiger M. Determination of thermal and mechanical material properties of ultra-high strength steels for hot stamping [J]. Steel Research International, 2008, 79 (2): 98-104.
[15] Linke B M, Gerber T, Hatscher A, et al. Impact of Si on microstructure and mechanical properties of 22MnB5 hot stamping steel treated by Quenching & Partitioning (Q&P) [J]. Metallurgical & Materials Transactions A, 2018, 49 (1): 54-65.
[16] 张三, 唐桂华, 沈建冬, 等. 成形温度对镁合金温热渐进成形微观组织及断口形貌的影响[J]. 塑性工程学报, 2021, 28 (3): 84-91.
Zhang S, Tang G H, Shen J D, et al. Effect of forming temperature on microstructure and fracture morphology of magnesium alloy during warm incremental forming [J]. Journal of Plastic Engineering, 2021, 28 (3): 84-91.
[17] 孙浩博, 陈响军, 徐斌, 等. 大型锥形筒件热成形数值模拟与工艺优化[J]. 塑性工程学报, 2021, 28 (5): 192-201.
Sun H B, Chen X J, Xu B, et al. Numerical simulation and process optimization of hot forming of large conical cylinder [J]. Journal of Plastic Engineering, 2021, 28 (5): 192-201.
[18] GB/ T 36961—2018, 超高强钢热冲压工艺通用技术[S].
GB/ T 36961—2018, General technology for hot stamping process of ultra high strength steel [S].
[19] 刘慎, 吕贻旬, 刘鸿. 高强板结构件拉毛原因分析与解决方法[J]. 锻造与冲压, 2020, (8): 28-30.
Liu S, Lyu Y X, Liu H. Analysis of the burr during high strength sheet forming [J]. Forging & Metalforming, 2020, (8): 28-30.
|