网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
后防撞梁外板的超高强钢热成形工艺
英文标题:Thermoforming process on ultra-high strength steel for outer panel of rear anti-collision beam
作者:李蕙宇1 2  刘子知1 2  张泉达1 2  孙福臻1 2 3  吉日格勒1 2  李 军1 2 
单位:1. 中国机械科学研究总院集团有限公司 2. 北京机科国创轻量化科学研究院有限公司 
关键词:超高强钢  热成形工艺  后防撞梁外板  减薄  起皱 
分类号:TG316. 5
出版年,卷(期):页码:2023,48(1):90-95
摘要:

 针对汽车后防撞梁外板, 采用数值模拟与零件试制相结合的方法, 验证超高强钢热成形工艺的合理性和有效性。首先制定超高强钢的热成形工艺路线, 据此采用有限元软件进行数值模拟, 进行后防撞梁外板有限元模型的设计及优化, 使得模拟结果满足成形要求。然后进行零件试制, 试制成功后进行尺寸型面检测和拉伸试验检测, 确保试制零件的尺寸精度、抗拉强度和屈服强度满足要求。数值模拟和零件试制结果显示: 模拟的零件最大减薄率为12. 9%, 最大起皱为9. 6%, 符合主机厂通用要求; 试制零件检测偏差值满足公差要求, 零件的抗拉强度实测值均超过1450 MPa, 屈服强度实测值均超过950 MPa, 达到零件的性能要求。依据热成形工艺和模拟方案进行零件加工, 能够获得优质产品, 为汽车超高强钢零件的批量化生产提供了设计参考。

 For automobile outer panel of rear anti-collision beam, the rationality and validity of the thermoforming process for ultra-high strength steel were verified by combining numerical simulation with trial-production of parts. Firstly, the thermoforming process route of ultra-high strength steel was formulated, which was numerically simulated by the finite element software, and the finite element model of outer panel for rear anti-collision beam was designed and optimized so that the simulation results met the forming requirements. Then, the parts were trial-produced, and after successful trial-production, the dimension profile testing and the tensile test testing were carried out to ensure the dimensional accuracy, tensile strength and yield strength of the trial-production parts to meet the requirements. The results of numerical simulation and part trial-production show that the maximum thinning rate and wrinkling rate of the simulated part are 12. 9% and 9. 6%, respectively, which meet the general requirements of the main engine factory, and the test deviation values of the trial-produced parts meet the tolerance requirements. The measured values of tensile strength and yield strength of the parts exceed 1450 MPa and 950 MPa, respectively, which meet the performance requirements of the parts. Thus, according to the thermoforming process and simulation scheme to process the parts, the high-quality products can be obtained, which can provide design reference for the mass production of automobile ultra-high strength steel parts.

基金项目:
山东半岛国家自主创新示范区发展建设基金项目(ZCQ19109)
作者简介:
作者简介: 李蕙宇(1997-), 女, 学士 E-mail: 1044457416@ qq. com 通信作者: 张泉达(1986-), 男, 博士, 工程师 E-mail: zhangquandadgu@ 163. com
参考文献:

 [1]  王存宇, 杨洁, 常颖, 等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁, 2019, 54 (2): 1-6.


Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [ J]. Iron & Steel, 2019, 54 (2): 1-6.

[2]  马廷涛, 庄厚川, 金科, 等. 高强钢材料车身轻量化研究[J]. 汽车工艺与材料, 2019, (5): 1-5, 11.

Ma T T, Zhuang H C, Jin K, et al. Research on lightweight of high-strength steel body [J]. AT&M, 2019, (5): 1-5, 11.

[3]  李扬, 刘汉武, 杜云慧, 等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25 (13): 101 - 104,109.

Li Y, Liu H W, Du Y H, et al. Application and development of AHSS in automobile industry [ J]. Materials Review, 2011, (13): 101-104, 109.

[4]  程威. 车身超高强钢热成形件冲压工艺及模具结构可靠性优化设计研究[D]. 长沙: 湖南大学, 2019.

Cheng W. Research on Process and Structure of Car Body Ultra High Strength Steel Hot-stamped Part and Hot-stamping Die Based on Reliability Optimization Method [D]. Changsha: Hunan University, 2019.

[5]  Karbasian H, Tekkaya A E. A review on hot stamping [J]. Journal of Materials Processing Technology, 2010, 210 (15): 2103-2118.

[6]  Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultrahigh strength steel parts [J]. CIRP Annals, 2017, 66 (2): 755-777.

[7]  Li N, Lin J, Balint D S, et al. Modelling of austenite formation during heating in boron steel hot stamping processes [J]. Journal of Materials Processing Technology, 2016, 237: 394-401.

[8]  Han S, Wang Z, Wang Z, et al. Heat-assisted hole-clinching process for joining magnesium alloy and ultra-high-strength steel [J]. The International Journal of Advanced Manufacturing Technology, 2021, 115 (1): 551-561.

[9]  Liang J X, Wang Y C, Cheng X W, et al. Microstructure and mechanical properties of a Cr-Ni-W-Mo steel processed by thermo-mechanical controlled processing [J]. Journal of Iron and Steel Research International, 2021, 28 (6): 713-721.

[10] Ghosh S, Miettune N I, Somani M C, et al. Nanolath martensiteaustenite structures engineered through DQ&P processing for developing tough, ultrahigh strength steels [J]. Materials Today: Proceedings, 2021, 46 (P6): 2131-2134.

[11] 胡健, 陈泽中, 刘涛, 等. 车门防撞梁热成形工艺优化仿真与试验[J]. 中国机械工程, 2021, 32 (1): 92-100.

Hu J, Chen Z Z, Liu T, et al. Simulation and tests on hot forming process optimization for door anti-collision beams [J]. China Mechanical Engineering, 2021, 32 (1): 92-100.

[12] 梁江涛. 2000 MPa 级热成形钢的强韧化机制及应用技术研究 [D]. 北京: 北京科技大学, 2019.

Liang J T. Strengthen-toughening Mechanism and ApplicationTechnology of 2000 MPa Grade Hot Stamping Steel [D]. Beijing: University of Science and Technology Beijing, 2019.

[13] Billur E, Cetin B, Gurleyik M. New generation advanced high strength steels: Developments, trends and constraints [J]. International Journal of Scientific and Technological Research, 2016, 1(2): 50-62.

[14] Lechler J, Merklein M, Geiger M. Determination of thermal and mechanical material properties of ultra-high strength steels for hot stamping [J]. Steel Research International, 2008, 79 (2): 98-104.

[15] Linke B M, Gerber T, Hatscher A, et al. Impact of Si on microstructure and mechanical properties of 22MnB5 hot stamping steel treated by Quenching & Partitioning (Q&P) [J]. Metallurgical & Materials Transactions A, 2018, 49 (1): 54-65.

[16] 张三, 唐桂华, 沈建冬, 等. 成形温度对镁合金温热渐进成形微观组织及断口形貌的影响[J]. 塑性工程学报, 2021, 28 (3): 84-91.

Zhang S, Tang G H, Shen J D, et al. Effect of forming temperature on microstructure and fracture morphology of magnesium alloy during warm incremental forming [J]. Journal of Plastic Engineering, 2021, 28 (3): 84-91.

[17] 孙浩博, 陈响军, 徐斌, 等. 大型锥形筒件热成形数值模拟与工艺优化[J]. 塑性工程学报, 2021, 28 (5): 192-201.

Sun H B, Chen X J, Xu B, et al. Numerical simulation and process optimization of hot forming of large conical cylinder [J]. Journal of Plastic Engineering, 2021, 28 (5): 192-201.

[18] GB/ T 36961—2018, 超高强钢热冲压工艺通用技术[S].

GB/ T 36961—2018, General technology for hot stamping process of ultra high strength steel [S].

[19] 刘慎, 吕贻旬, 刘鸿. 高强板结构件拉毛原因分析与解决方法[J]. 锻造与冲压, 2020, (8): 28-30.

Liu S, Lyu Y X, Liu H. Analysis of the burr during high strength sheet forming [J]. Forging & Metalforming, 2020, (8): 28-30.  

 

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9