网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镁合金锻压-弯曲反复变形的有限元数值模拟分析与实验研究
英文标题:Finite element numerical simulation analysis and experimental research on forging-bending repeated deformation for magnesium alloys
作者:李旻昊 卢立伟 张家龙 范宇田 车波 马旻 
单位:湖南科技大学 
关键词:AZ31镁合金 锻压-弯曲反复变形 等效应变 微观组织 硬度 
分类号:TG146.2
出版年,卷(期):页码:2023,48(2):52-61
摘要:

 为了改善传统大塑性变形技术在实际操作中尺寸参数的局限性,提高AZ31镁合金的晶粒细化效果,提升其综合力学性能,将AZ31镁合金板材分别通过DEFORM-3D有限元数值模拟和300 ℃条件下4道次锻压-弯曲反复变形工艺实验来研究其变形行为和微观组织。模拟结果表明:变形道次越多,等效应变值越大,1道次变形时,等效应变呈间隔分布,而经过4道次变形后,高应变区域向低应变区域扩散,等效应变分布趋于均匀化;同时,变形过程中存在剪切力,弯曲剪切作用与锻压作用相互耦合,对细化晶粒、开启非基面滑移具有促进作用,有助于改善AZ31镁合金的组织与力学性能。实验结果表明:变形道次越多,晶粒细化效果越好,平均晶粒尺寸可显著细化至7.1 μm,同时,组织均匀性不断改善。4道次变形后板材在不同区域处的织构取向分布差异较小,硬度值分布也相对均匀,平均硬度值为62.8 HV。

 In order to improve the limitation of size parameters in the actual operation of traditional large plastic deformation technology, intensify the grain refinement effect of AZ31 magnesium alloy and strengthen its comprehensive mechanical properties, the deformation behavior and microstructure of AZ31 magnesium alloy plate were studied by DEFORM-3D finite element numerical simulation and four-pass forging-bending repeated deformation process experiment at 300 ℃. The simulation results show that the more the deformation passes are, the greater the equivalent strain value is. During the one-pass deformation, the equivalent strain presents an interval distribution, but after four-pass deformation, the high-strain region diffuses to the low-strain region, and the equivalent strain distribution tends to be uniform. At the same time, there is shear force in the deformation process, and the bending shear action and forging action are coupled with each other, which can promote grain refinement and open non-base slip and is helpful to intensify the microstructure and mechanical properties of AZ31 magnesium alloy. The experimental results show that the more the deformation passes are, the better the grain refinement effect is, the average grain size can be significantly refined to 7.1 μm, and at the same time, the microstructure uniformity is continuously improved. After four-pass deformation, the texture orientation distribution of the plate in different regions has little difference, and the hardness value distribution is relatively uniform with an average hardness value of 62.8 HV.

基金项目:
国家自然科学基金资助项目(52174362,51975207);湖南省自然科学基金资助项目(2021JJ30257,2020JJ5181);湖南省教育厅资助项目(19C0773)
作者简介:
作者简介:李旻昊(1997-),男,硕士研究生,E-mail:969426949@qq.com;通信作者:卢立伟(1983-),男,博士,教授,E-mail:cqulqyz@126.com
参考文献:

 [1]代晓军, 杨西荣, 荆磊, . 等通道挤压变形技术制备超细晶镁合金的研究进展[J]. 稀有金属, 2020, 44(12): 1325-1332.


Dai X J, Yang X R, Jing L, et. al. Research progress in ultrafine grain magnesium alloy by equal channel angular pressing[J]. Chinese Journal of Rare Metals, 2020, 44(12): 1325-1332.


[2]陈振华. 镁合金[M]. 北京: 化学工业出版社, 2004.


Chen Z H. Magnesium Alloy[M]. Beijing: Chemical Industry Press, 2004.


[3]黎文献. 镁及镁合金[M]. 长沙: 中南大学出版社, 2005.


Li W X. Magnesium & Magnesium Alloy[M]. Changsha: Zhongnan University Press, 2005.


[4]李权. Mg-Al-Zn系镁合金热模拟挤压组织研究[D]. 重庆: 重庆大学, 2008.


Li Q. Investigation of Affecting Factors on Microstructure of Hot Extruded Mg-Al-Zn Alloys[D]. Chongqing: Chongqing University, 2008.


[5]崔忠圻, 覃耀春. 金属学与热处理[M].2.北京: 机械工业出版社, 2007.


Cui Z Q, Qin Y C. Metallography & Heat Treatment [M]. 2nd Edition. Beijing: China Machine Press, 2007.


[6]王文柯. ZK60镁合金板材降温轧制及织构对其成形性影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.


Wang W K. Research on Lowered Temperature Rolling of ZK60 Plates and the Effect of Texture on Formability[D]. Harbin: Harbin Institute of Technology, 2019.


[7]Kang W, Lu L W, Feng L B, et al. Effects of pre-aging on microstructure evolution and deformation mechanisms of hot extruded Mg-6Zn-1Gd-1Er Mg alloys[EB/OL]. https://doi.org/10.1016/j.jma.2021.05.0192021-07-24.


[8]Wu H R, Du W B, Li S B, et al. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced by I-phase[J]. Rare Metals, 2019, 38(8): 733-738.


[9]Sheng K, Lu L W, Xiang Y, et al. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion[J]. Journal of Magnesium and Alloys, 2019, 7(4): 717-724.


[10]白晓青. 挤压-转角挤压AZ31镁合金板组织及力学性能研究[D]. 太原: 太原理工大学, 2020.


Bai X Q. Study on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy Sheet Fabricated by Extrusion-angle Extrusion[D]. Taiyuan: Taiyuan University of Technology, 2020.


[11]胡红军, 胡刚, 谢黛薇, . 新型镁合金管材挤压-剪切-弯曲连续成形的研究与验证[J]. 中国有色金属学报, 2022,32(4):921-929.


Hu H J, Hu G, Xie D W, et al. Researches and validation on new type continuous forming for extrusion-shear-bending of magnesium alloy thin-walled tube[J]. The Chinese Journal of Nonferrous Metals, 2022,32(4):921-929.


[12]Guan D K, Gao J H, Sharp Jet al. Enhancing ductility and strength of nanostructured Mg alloy by in-situ powder casting during spark plasma sintering[J]. Journal of Alloys and Compounds, 2018,769: 71-77.


[13]Zhang W G,Ye Y C,He L J,et al. Dynamic mechanical response and microstructural evolution of extruded Mg AZ31B plate over a wide range of strain rates[J]. Journal of Alloys and Compounds, 2017696: 1067-1079.


[14]齐艳阳, 刘江林, 王涛, . 基于FEM分析轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律[J]. 稀有金属, 2022,46(7):873-881.


Qi Y Y, Liu J L, Wang T, et al. Edge damage of hot rolled AZ31B magnesium alloy sheets with pre-rolling based on FEM[J]. Chinese Journal of Rare Metals,202246(7)873-881.


[15]Tian J, Huang H L, Pan Z Q, et al.Effect of flow velocity on corrosion behavior of AZ91D magnesium alloy at elbow of loop system[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2857-2867.


[16]Hibbeler R C. Mechanics of Materials [M].6th Edition. New York:Pearson College Div, 2004.


[17]Wang W K, Zhang W C, Chen W Z,et al. Homogeneity improvement of friction stir welded ZK61 alloy sheets in microstructure and mechanical properties by multi-pass lowered-temperature rolling[J]. Materials Science & Engineering:A, 2017,703: 17-26.


[18]Litzy Lina Choquechambi Catorceno, Hamilton Ferreira Gomesde de Abreu, Angelo Fernando Padilha. Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet[J]. Journal of Magnesium and Alloys, 2018, 6(2): 121-133.


[19]Kim S H, You B S, Yim C D, et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets[J]. Materials Letters, 2005, 59(29-30): 3876-3880.


[20]邵爽. 深冷处理对 Mg-1.5Zn-0.15Gd 合金显微组织与力学性能的影响[D]. 南昌: 南昌大学, 2014.


Shao S. The Effect of Cryogenic Treatment on the Microstructure and Mechanical Properties of Mg-1.5Zn-0.15Gd Alloy[D]. Nanchang: Nanchang University, 2014.


[21]吴卓阳. 室温多向锻造及时效对AZ80镁合金组织与性能的影响[D]. 太原: 中北大学, 2021.


Wu Z Y. Effect of Room Temperature Multidirectional Forging and Aging on Microstructure and Properties of AZ80 Magnesium Alloy[D]. Taiyuan: North University of China, 2021.


[22]Liu Y, Shao S, Xu C S, et al. Effect of cryogenic treatment on the microstructure and mechanical properties of Mg-1.5Zn-0.15Gd magnesium alloy[J]. Materials Science and Engineering: A, 2013, 588: 76-81.


[23]Yin D D, Boehlert C J, Long L J, et al. Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg-Y sheets[J], International Journal of Plasticity2021136: 102878.


[24]Wang Y, Li F, Bian N, et al. Coordinated control of preferred orientation and uniformity of AZ31 in accumulative alternating back extrusion[J]. Materials Science and Engineering:A, 2021,818: 141366.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9