网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Si-Cr-Mo改进型H13热作模具钢热变形行为及有限元模拟
英文标题:Thermal deformation behavior and finite element simulation on Si-Cr-Mo modified H13 hot work die steel
作者:陈国鑫1 2 桑宝光1 刘明泽1 闫瑾1 刘宏伟3 封少波3 
单位:1.大连工业大学 2.青岛高端轴承研究院 3.中国科学院金属研究所 
关键词:3Cr2Mo3钢 本构方程 热加工图 微观组织 变形温度 应变速率 
分类号:TG142.1
出版年,卷(期):页码:2023,48(2):215-223
摘要:

 利用Gleeble-3800热模拟实验机,对自主研发的Si-Cr-Mo改进型H13热作模具钢——3Cr2Mo3钢进行热压缩实验,研究了其在变形温度为950~1200 ℃、应变速率为0.01~10 s-1 条件下的热变形行为。基于实验得到的真应力-真应变曲线,建立了Arrhenius型本构方程,并对其进行真应变补偿。由动态材料模型构建了3Cr2Mo3钢的热加工图,并得到了最佳热加工范围。利用有限元软件DEFORM和光学显微镜,研究了3Cr2Mo3钢在热变形过程中的温度场与微观组织的关系。结果表明:3Cr2Mo3钢的真应力受应变速率和变形温度的影响,且在低应变速率下(0.01 s-1)出现明显的动态软化特征,6次真应变补偿型本构方程的拟合精度高;实验条件范围内,3Cr2Mo3钢的最佳热加工范围为变形温度为1110~1200 ℃、应变速率为0.01~1 s-1;有限元软件DEFORM温度场结果显示,随着变形温度的升高和应变速率的降低,试样的心部与表面的温度场分布均匀,微观组织为均匀细小的动态再结晶晶粒。

 Hot compression tests were conducted on the self-developed Si-Cr-Mo modified H13 hot work die steel-3Cr2Mo3 steel by thermal simulation testing machine Gleeble-3800, and the thermal deformation behavior was studied at the deformation temperatures of 950-1200 ℃ and the strain rates of 0.01-10 s-1. Then, based on the true stress-true strain curves obtained from the test, the Arrhenius type constitutive equation was established, and the true strain compensation was performed on it. Furthermore, the thermal processing map of 3Cr2Mo3 steel was constructed by the dynamic material model, and the optimal thermal processing range was obtained. Finally, the relationship between temperature field and microstructure of 3Cr2Mo3 steel during the thermal deformation process was studied by finite element software DEFORM and optical microscopy. The results show that the true stress of 3Cr2Mo3 steel is affected by the strain rate and the deformation temperature, there is an obvious dynamic softening characteristic at low strain rate (0.01 s-1), and the sixth degree true strain compensation type constitutive equation has high fitting accuracy. Within the range of test conditions, the optimum thermal processing range of 3Cr2Mo3 steel is the deformation temperature of 1110-1200 ℃ and the train rate of 0.01-1 s-1. The temperature field results of finite element software DEFORM show that with the increasing of deformation temperature and the decreasing of strain rate, the temperature field distribution at the core and surface of specimen is uniform, and the microstructures are uniform and fine dynamic recrystallized grains.

基金项目:
广东省重点领域研发计划(2020B010184001);辽宁省教育厅自然科学基础项目(J2020050)
作者简介:
作者简介:陈国鑫(1996-),男,硕士,工程师,E-mail:gxchen0911@163.com;通信作者:桑宝光(1980-),男,博士,副教授,E-mail:bgsang@163.com
参考文献:

[1]崔崑. 国内外模具用钢发展概况[J].金属热处理,2007,32(1):1-11.


Cui K. Development of die and mould steels at home and abroad[J]. Heat Treatment of Metals,2007,32(1):1-11.


[2]Medvedeva A,Bergstrm J,Gunnarsson S,et al. High-temperature properties and microstructural stability of hot-work tool steels[J]. Materials Science and Engineering: A,2009,5231-2):39-46.


[3]Muhr P,Siller I.From development to practice-the success story of a new hot work tool steel[A].Proceedings of the 7th International Tooling Conference[C].Shenzhen,2006.


[4]邱宇, 袁飞,曾元松,等.4Cr5MoSiV1热作模具钢的热变形行为与热加工图[J].机械工程材料,2021,45(2):71-77.


Qiu Y,Yuan F,Zeng Y Set al.Hot deformation behavior and hot processing maps of 4Cr5MoSiV1 hot working die steel[J].Materials for Mechanical Engineering,2021,45(2):71-77.


[5]Xia S W,Zuo P,Zeng Y,et al. Influence of nickel on secondary hardening of a modified AISI H13 hot work die steel[J]. Materials Science & Engineering Technology,2019,50(2): 197-203.


[6]杨成康, 程晓农,张洁,等.W-Mo-V改进型H13模具钢的力学性能与磨损行为[J].金属热处理,2021,46(4):30-37.


Yang C K,Cheng X N,Zhang J,et al. Mechanical properties and wear behavior of W-Mo-V modified H13 tool steel[J]. Heat Treatment of Metals,2021,46(4):30-37.


[7]张金祥, 欧阳希,周健,等.Cr含量降低对H13钢组织与力学性能的影响[J].材料导报,2018,32(8):1323-13271343.


Zhang J X,Ouyang X,Zhou J,et al. Study on microstructure and mechanical properties of H13 tool steel after chromium content reduction[J]. Materials Reports,2018,32(8):1323-13271343.


[8]Du N Y,Liu H W,Fu P X,et al. Microstructural stability and softening resistance of a novel hot-work die steel[J]. Crystals,2020,10(4),238-253.


[9]Sellars C M,McTegart W J.On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9): 1136-1138.


[10]Haghdadi N,Zarei-Hanzaki A,Abedi H R.The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain[J]. Materials Science and Engineering: A,2012,535: 252-257.


[11]Ou L,Nie Y F,Zheng Z Q. Strain compensation of the constitutive equation for high temperature flow stress of a Al-Cu-Li alloy[J]. Journal of Materials Engineering and Performance,2014,23(1): 25-30.


[12]Nayak K C,Date P P. Development of constitutive relationship for thermomechanical processing of Al-SiC composite eliminating deformation heating[J]. Journal of Materials Engineering and Performance,2019,28(9): 5323-5343.


[13]Dong Y Y,Zhang C S,Lu X,et al. Constitutive equations and flow behavior of an as-extruded AZ31 magnesium alloy under large strain condition[J]. Journal of Materials Engineering and Performance,2016,25(6): 2267-2281.


[14]Prasad Y,Gegel H L,Doraivelu S M,et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A,1984,15(10): 1883-1892.


[15]陈国鑫,桑宝光,刘宏伟,.H13钢高温热变形特征与动态再结晶行为[J].塑性工程学报,2022,29(6):193-202.


Chen G XSang B GLiu H Wet al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature[J]. Journal of Plasticity Engineering,2022,29(6):193-202.


[16]卓秀秀, 徐桂芳,袁圆,.0Cr17Mn17Mo3NiN奥氏体不锈钢的热变形行为及热加工图[J].机械工程学报,2017,53(22):74-80.


Zhuo X X,Xu G F,Yuan Y,et al. Hot deformation behavior and processing map of 0Cr17Mn17Mo3NiN austenitic stainless steel[J]. Journal of Mechanical Engineering,2017,53(22): 74-80.


 


[17]Yin B Q,Xue X Y,Tang B,et al. Hot deformation behaviors of WE71 alloy under plain strain compression at elevated temperature[J]. Progress in Natural Science: Materials International,2020,30(4):526-532.


[18]王龙祥, 王建国,刘东,. GH4738合金热加工工艺窗口的表征与验证[J].锻压技术,2021,46(5):207-215227.


Wang L X,Wang J G,Liu D,et al. Characterization and verification on hot working process windows for GH4378 alloy[J]. Forging & Stamping Technology,2021,46(5):207-215227.


[19]王桂花, 杨秋月,吴珊珊,.GH2132高温合金热变形行为研究[J].塑性工程学报,2021,28(3):137-145.


Wang G H,Yang Q Y,Wu S S,et al. Study on hot deformation behavior of GH2132 superalloy[J]. Journal of Plasticity Engineering,2021,28(3):137-145.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9