网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
面向误差补偿的热轧板带变形曲率积分重构分析
英文标题:Integral reconstruction analysis on deformation curvature for hot-rolled strip with error compensation
作者:罗彩玉1 刘明2 
单位:1.阿克苏职业技术学院 机电工程学院 2.华北理工大学 电气工程学院 
关键词:热轧板带变形 曲线重构 曲率 误差补偿 分布应变 
分类号:TG156
出版年,卷(期):页码:2023,48(3):139-143
摘要:

 为深入分析热轧板带的变形重构过程,通过分布式方法对热轧板带的表面区域实施检测,确定采用曲率积分递推方式形成的误差补偿重构算法。然后对热轧板带开展模型仿真与变形分析,以促进重构性能的显著提升。根据热轧板带表面的曲率数据判断分布应变特征,计算得到热轧板带的变形数据,形成多条曲线并进行插值,从而对整体热轧板带完成变形重构的过程。结果表明: 逐渐提高载荷时,形成了更大的重构方差,使最大误差降低。与切角递推算法相比,曲率积分递推算法具有更小的误差和耗时,并可以获得较切角递推算法更优的重构性能。研究结果对控制热轧板带的变形程度具有很好的效果,对提高板带轧制过程中的成形精度以及控制稳定性具有很好的实践价值。

 In order to analyze the deformation and reconstruction process of hot-rolled strip deeply, the surface area of hot-rolled strip was inspected by the distributed method, and the error compensation reconstruction algorithm formed by curvature integral recursive method was determined. Then, the model simulation and deformation analysis of hot rolled strip were carried out to promote the significant improvement of reconstruction performance. According to the curvature data of the surface of hot-rolled strip, the strain distribution characteristics were judged, and the deformation data of hot-rolled strip were calculated. Furthermore, the multiple curves were formed and interpolated, so as to complete the deformation reconstruction process of the whole hot-rolled strip. The results show that with the increasing of load, the larger reconstruction variance is formed, and the maximum error decreases. Compared with the tangent angle recursive algorithm, the curvature integral recurision algorithm has smaller error and time consumption and obtains better reconstruction performance comparied with the tangential recurision method. Thus, the research result has a good effect on controlling the deformation degree of hot-rolled strips and has good practical value on improving the precision and stability control of strips in rolling process.

基金项目:
河北省自然科学基金资助项目(B2016209059)
作者简介:
作者简介:罗彩玉(1980-),女,硕士,副教授 E-mail:a15134457133@163.com
参考文献:

 [1]陈彤, 李永亮,邝霜,等. 热轧带钢均匀化冷却问题分析与控制措施[J]. 锻压技术,2021,46(7):83-89.


Chen T,Li Y L,Kuang S,et al. Analysis and control measures on uniform cooling for hot rolling strip steel[J]. Forging & Stamping Technology,2021,46(7):83-89.

[2]刘明华, 张强,刘英华,等. 基于机器学习的热轧轧制力预测[J]. 锻压技术,2021,46(10):233-241.

Liu M H, Zhang Q, Liu Y H, et al. Prediction of rolling force in hot rolling based on machine learning[J]. Forging & Stamping Technology,2021,46(10):233-241.

[3]王少, 陈斌, 司小明, 等. 热轧板带表面质量智能化自动判定系统的开发应用[J]. 中国冶金, 2019, 29(7): 70-73,78. 

Wang S, Chen B, Si X M, et al. Development and application of intelligent automatic judgment system for surface quality of hot rolled strip [J]. China Metallurgy, 2019, 29(7): 70-73,78.

[4]马明, 丁桦, 唐正友, 等. 双相不锈钢2205热轧板微观组织及塑性变形的均匀性[J]. 材料与冶金学报, 2018, 17(4): 254-262.

Ma M, Ding H, Tang Z Y, et al. Microstructure and plastic deformation uniformity of dual-phase stainless steel 2205 hot rolled sheet [J]. Journal of Materials and Metallurgy, 2018, 17(4): 254-262.

[5]杨淑贞, 董彬. 基于PSO-BP的双辊热轧AZ91D镁合金板横向厚度预测[J]. 特种铸造及有色合金, 2018, 38(11): 1212-1214.

Yang S Z, Dong B. Prediction of transverse thickness of twin-roll hot rolled AZ91D magnesium alloy plate based on PSO-BP [J]. Special Casting & Nonferrous Alloys, 2018, 38(11): 1212-1214.

[6]王建功, 赵虎, 夏银锋, 等. 常规热连轧线Ti-IF钢铁素体轧制工艺研究与应用[J]. 钢铁, 2017, 52(10): 65-71.

Wang J G, Zhao H, Xia Y F, et al. Research and application of Ti-IF steel rolling process in conventional hot strip rolling line[J]. Iron and Steel, 2017, 52(10): 65-71.

[7]Lee K, Aihara A, Puntsagdash G, et al. Feasibility study on a strain based deflection monitoring system for wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 82: 117-129.

[8]张福范. 悬臂矩形板的弯曲[J]. 清华大学学报:自然科学版,1979,(2): 43-51.

Zhang F F. Bending of a rectangular cantilever plate[J]. Journal of Tsinghua University: Science and Technology, 1979,(2): 43-51.

[9]易金聪. 基于FBG 传感阵列的智能结构形态感知与主动监测研究[D]. 上海: 上海大学, 2014. 

Yi J C. Shape Perception and Active Monitoring for Smart Structure Using FBG Sensor Array[D]. Shanghai: Shanghai University, 2014.

[10]侯祥林, 郑夕健, 张良, 等. 热轧板带弯曲大变形高阶非线性偏微分方程推导与优化算法研究[J]. 物理学报, 2012, 61(18): 9-18.

Hou X L, Zheng X J, Zhang L, et al. Research on derivation and optimization algorithm of high-order nonlinear partial differential equations for thin plate bending large deformation[J]. Acta Physica Sinica, 2012, 61(18): 9-18.

[11]Parakkat A D,Muthuganapathy R. Crawl through neighbors: A simple curve reconstruction algorithm[J]. Computer Gragpics Forum, 2016, 35(5):177-186.

[12]王勇, 章定国, 范纪华, 等. 基于B样条插值法的柔性矩形热轧板带的动力学分析[J]. 振动工程学报, 2019, 32(5): 811-821.

Wang Y, Zhang D G, Fan J H, et al. Dynamic analysis of flexible rectangular thin plate based on B-spline interpolation [J]. Journal of Vibration Engineering, 2019, 32(5): 811-821.

[13]谭跃刚, 黄兵, 刘虎, 等. 基于分布应变的薄板变形重构算法研究[J]. 机械工程学报, 2020, 56(13): 242-248. 

Tan Y G, Huang B, Liu H, et al. Research on deformation reconstruction algorithm of thin plate based on distributed strain[J]. Journal of Mechanical Engineering, 2020, 56(13): 242-248.

[14]马晓彬, 张杰, 李洪波, 等. 基于曲率积分法考虑包辛格效应的辊式矫直交变弯曲研究[J]. 塑性工程学报, 2018, 25(6): 118-124.

Ma X B, Zhang J, Li H B, et al. Research on roller straightening alternating bending considering bauschinger effect based on curvature integral method [J]. Journal of Plasticity Engineering, 2018, 25(6): 118-124.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9