[1]高俊. 6082铝合金热成形行为及其在汽车转向节高温精密锻造的应用[D]. 长春:吉林大学, 2020.
Gao J. Hot Forming Behavior of 6082 Aluminum Alloy and Application in High Temperature Precision Forging of Automobile Steering Knuckle [D]. Changchun: Jilin University, 2020.
[2]孙田田. 工艺参数对6082铝合金锻件力学性能影响规律的研究[D]. 上海:上海交通大学, 2019.
Sun T T. Study on the Influence of Process Parameters on the Mechanical Properties of 6082 Aluminum Alloy Forgings [D]. Shanghai: Shanghai Jiao Tong University, 2019.
[3]张彦敏,陈赛,葛学元,等. 6082铝合金热变形行为及热加工图[J]. 塑性工程学报, 2018, 25(4): 113-121.
Zhang Y M, Chen S, Ge X Y, et al. Hot deformation behavior and hot working diagram of 6082 aluminum alloy [J]. Journal of Plasticity Engineering, 2018, 25(4): 113-121.
[4]Wang S, Holm E A, Suni J, et al. Modeling the recrystallized grain size in single phase materials[J]. Acta Materialia, 2011, 59(10): 3872-3882.
[5]Li Z C, Deng Y L, Yuan M F, et al. Effect of isothermal compression and subsequent heat treatment on grain structures evolution of Al-Mg-Si alloy[J]. Journal of Central South University, 2021, 28(9): 2670-2686.
[6]向晶,谢尚昇,李剑,等. 固溶处理对6082铝合金棒材粗晶环和力学性能的影响[J]. 热加工工艺, 2016, 45(20): 200-203.
Xiang J, Xie S S, Li J, et al. Effect of solution treatment on coarse grain ring and mechanical properties of 6082 aluminum alloy bar [J]. Hot Working Technology, 2016, 45(20): 200-203.
[7]周广宇,董博,胡皓. 固溶处理对6082铝合金挤压棒材组织与性能的影响[J]. 铝加工, 2020,(4): 11-15.
Zhou G Y, Dong B, Hu H. Effect of solution treatment on microstructure and properties of 6082 aluminum alloy extruded bar [J]. Aluminium Fabrication, 2020,(4): 11-15.
[8]李鹏伟,卢小磊,何金,等. 车体用6082铝合金型材热处理工艺研究[J]. 铝加工, 2016,(2): 50-52.
Li P W, Lu X L, He J, et al. Study on heat treatment process of 6082 aluminum alloy profile for car body [J]. Aluminium Fabrication, 2016,(2): 50-52.
[9]Eivani A R, Jafarian H R, Zhou J. Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 57: 881-892.
[10]Na T W, Park H K, Park C S, et al. Misorientation angle analysis near the growth front of abnormally growing grains in 5052 aluminum alloy[J]. Acta Materialia, 2016, 115: 224-229.
[11]Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Materials Science and Engineering: A, 2019, 761:138044.1-138044.13.
[12]Karhausen K, Kopp R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Research, 1992, 63(6):247-256.
[13]郑磊,姜珊,李宏常,等. 工艺参数对6005A合金力学性能及粗晶层的影响[J]. 有色金属加工, 2021, 50(5): 27-29.
Zheng L, Jiang S, Li H C, et al. Effect of process parameters on mechanical properties and coarse grain layer of 6005A alloy [J]. Nonferrous Metal Processing, 2021, 50(5): 27-29.
[14]刘胜胆,陈小连,张端正,等. 固溶温度对6082铝合金显微组织与性能的影响[J]. 中国有色金属学报, 2015, 25(3): 582-588.
Liu S D, Chen X L, Zhang D Z, et al . Effect of solution temperature on microstructure and properties of 6082 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 582-588.
[15]Qian X, Parson N, Chen X G. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing[J]. Journal of Materials Science & Technology, 2020, 52: 189-197.
[16]李晓琳,魏峥. 固溶温度对6061铝合金微观组织和力学性能的影响研究[J]. 热加工工艺, 2019, 48(24): 144-146.
Li X L, Wei Z. Effect of solution temperature on microstructure and mechanical properties of 6061 aluminum alloy [J]. Hot Working Technology, 2019, 48(24): 144-146.
|