网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于BP神经网络的6082铝合金固溶时效处理后的晶粒尺寸预测
英文标题:Grain size prediction of 6082 aluminum alloy after solution and aging treatment based on BP neural network
作者:张浩1 王国文2 曾凡宜1 田壵1 邓磊1 王新云1 唐学峰1 金俊松1 
单位:1.华中科技大学 材料成形与模具技术国家重点实验室 2.湖北三环锻造有限公司 
关键词:6082铝合金 T6热处理 BP神经网络 变形状态 固溶时效 晶粒尺寸 
分类号:TG316
出版年,卷(期):页码:2023,48(3):227-235
摘要:

 Al-Mg-Si铝合金在T6热处理后的晶粒尺寸会直接影响其服役性能。为了建立6082铝合金在固溶时效处理后的晶粒尺寸与变形条件、热处理制度相关的预测模型,对不同变形条件和不同热处理条件下晶粒尺寸的演化规律进行了研究,并针对热变形和热处理后的金相组织进行了表征。研究结果表明:在统一的热处理制度下,随着试样变形后GNDGROD值的增加,热处理后的晶粒尺寸相应增大;在不同的热处理制度下,随着固溶温度、固溶时间的增加,试样热处理后的晶粒尺寸明显增大。采用多隐含层的BP神经网络建立了6082铝合金热处理后的晶粒尺寸的预测模型,模型的预测精度达到95%

 The grain size of Al-Mg-Si aluminum alloy after T6 heat treatment directly affects its service properties. In order to establish the prediction model for the grain size of 6082 aluminum alloy after solution and aging treatment related with deformation condition and heat treatment system, the evolution laws of the grain size under different deformation conditions and different heat treatment conditions were studied, and the metallographic structure after thermal deformation and heat treatment was characterized. The research results show that under the unified heat treatment system, the grain size after heat treatment increases with the increaseing of GND and GROD values of sample after deformation, and under different heat treatment systems, with the increaseing of solution temperature and solution time, the grain size of sample after heat treatment increases obviously. A prediction model for the grain size of 6082 aluminum alloy after heat treatment was established by using BP neural network with multiple hidden layers, and the prediction accuracy of the model reaches 95%.

基金项目:
国家自然科学基金资助项目(52090043); 湖北省重点研发计划(2020BAB040)
作者简介:
作者简介:张浩(1998-),男,硕士研究生 E-mail:zhanghao426@hust.edu.cn 通信作者:邓磊(1982-),男,博士,副教授 E-mail:denglei@hust.edu.cn
参考文献:

 [1]高俊. 6082铝合金热成形行为及其在汽车转向节高温精密锻造的应用[D]. 长春:吉林大学, 2020.


Gao J. Hot Forming Behavior of 6082 Aluminum Alloy and Application in High Temperature Precision Forging of Automobile Steering Knuckle [D]. Changchun: Jilin University, 2020.

[2]孙田田. 工艺参数对6082铝合金锻件力学性能影响规律的研究[D]. 上海:上海交通大学, 2019.

Sun T T. Study on the Influence of Process Parameters on the Mechanical Properties of 6082 Aluminum Alloy Forgings [D]. Shanghai: Shanghai Jiao Tong University, 2019.

[3]张彦敏,陈赛,葛学元,等. 6082铝合金热变形行为及热加工图[J]. 塑性工程学报, 2018, 25(4): 113-121.

Zhang Y M, Chen S, Ge X Y, et al. Hot deformation behavior and hot working diagram of 6082 aluminum alloy [J]. Journal of Plasticity Engineering, 2018, 25(4): 113-121.

[4]Wang S, Holm E A, Suni J, et al. Modeling the recrystallized grain size in single phase materials[J]. Acta Materialia, 2011, 59(10): 3872-3882.

[5]Li Z C, Deng Y L, Yuan M F, et al. Effect of isothermal compression and subsequent heat treatment on grain structures evolution of Al-Mg-Si alloy[J]. Journal of Central South University, 2021, 28(9): 2670-2686. 

[6]向晶,谢尚昇,李剑,等. 固溶处理对6082铝合金棒材粗晶环和力学性能的影响[J]. 热加工工艺, 2016, 45(20): 200-203.

Xiang J, Xie S S, Li J, et al. Effect of solution treatment on coarse grain ring and mechanical properties of 6082 aluminum alloy bar [J]. Hot Working Technology, 2016, 45(20): 200-203.

[7]周广宇,董博,胡皓. 固溶处理对6082铝合金挤压棒材组织与性能的影响[J]. 铝加工, 2020,(4): 11-15.

Zhou G Y, Dong B, Hu H. Effect of solution treatment on microstructure and properties of 6082 aluminum alloy extruded bar [J]. Aluminium Fabrication, 2020,(4): 11-15.

[8]李鹏伟,卢小磊,何金,等. 车体用6082铝合金型材热处理工艺研究[J]. 铝加工, 2016,(2): 50-52.

Li P W, Lu X L, He J, et al. Study on heat treatment process of 6082 aluminum alloy profile for car body [J]. Aluminium Fabrication, 2016,(2): 50-52.

[9]Eivani A R, Jafarian H R, Zhou J. Simulation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy[J]. Journal of Manufacturing Processes, 2020, 57: 881-892.

[10]Na T W, Park H K, Park C S, et al. Misorientation angle analysis near the growth front of abnormally growing grains in 5052 aluminum alloy[J]. Acta Materialia, 2016, 115: 224-229.

[11]Wang X Y, Wang D K, Jin J S, et al. Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel [J]. Materials Science and Engineering: A, 2019, 761:138044.1-138044.13.

[12]Karhausen K, Kopp R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Research, 1992, 63(6):247-256.

[13]郑磊,姜珊,李宏常,等. 工艺参数对6005A合金力学性能及粗晶层的影响[J]. 有色金属加工, 2021, 50(5): 27-29.

Zheng L, Jiang S, Li H C, et al. Effect of process parameters on mechanical properties and coarse grain layer of 6005A alloy [J]. Nonferrous Metal Processing, 2021, 50(5): 27-29. 

[14]刘胜胆,陈小连,张端正,等. 固溶温度对6082铝合金显微组织与性能的影响[J]. 中国有色金属学报, 2015, 25(3): 582-588.

Liu S D, Chen X L, Zhang D Z, et al . Effect of solution temperature on microstructure and properties of 6082 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(3): 582-588.

[15]Qian X, Parson N, Chen X G. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing[J]. Journal of Materials Science & Technology, 2020, 52: 189-197.

[16]李晓琳,魏峥. 固溶温度对6061铝合金微观组织和力学性能的影响研究[J]. 热加工工艺, 2019, 48(24): 144-146.

Li X L, Wei Z. Effect of solution temperature on microstructure and mechanical properties of 6061 aluminum alloy [J]. Hot Working Technology, 2019, 48(24): 144-146. 

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9