网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
奥氏体不锈钢塑性变形过程中的应力分布
英文标题:Stress distribution on austenitic stainless steel during plastic deformation
作者:付殿禹1 蒋鹏1 孙勇1 凌云汉1 孙伟领1 邓晓婷2 
单位:1.中国机械总院集团北京机电研究所有限公司 2.沈阳理工大学 材料科学与工程学院 
关键词:不锈钢 应力分布 组织相变 变形程度 变形温度 
分类号:TG113
出版年,卷(期):页码:2023,48(3):255-260
摘要:

 为了研究奥氏体不锈钢形变后的应力分布规律,以及与马氏体相变行为的关系,对形变后的奥氏体不锈钢板材进行残余应力测试分析,并在相应变形区域进行组织观测。测试中,对奥氏体不锈钢板材进行了单向拉伸试验,并采用无损检测法——X射线衍射(XRD)对不同变形条件下的应力值进行分析;最后,通过有限元模拟进行验证分析,得到了不同变形条件下的应力分布规律。结果表明,变形程度、变形温度、组织相变等因素均对变形后的应力分布规律有一定的影响;随着拉伸载荷的增加,变形复杂度增加,残余应力分布不均匀性增加,测得的应力值增大;随着温度升高,材料本身组织变化,应力值随之减小。

 In order to study the stress distribution laws of austenitic stainless steel after deformation and the relationship with martensitic transformation behavior, the residual stress of deformed austenitic stainless steel plate was measured and analyzed, and the microstructure was observed in the corresponding deformation area. During the test, the uniaxial tensile test of austenitic stainless steel plate was carried out, and the stress values under different deformation conditions were analyzed by non-destructive testing method of X-ray diffraction (XRD). Finally, the verification analysis was carried out by finite element simulation, and the stress distribution laws under different deformation conditions were obtained. The results show that the deformation degree, deformation temperature, microstructure phase transition and other factors have certain influence on the stress distribution laws after deformation. Furthermore, with the increasing of tensile load, the deformation complexity increases, the unevenness of residual stress distribution increases, and the measured stress value increases. In addition, with the increasing of temperature, the microstructure of the material itself changes, and the stress value decreases. 

基金项目:
作者简介:
作者简介:付殿禹(1978-),男,博士,工程师 E-mail:romhand_fdy@163.com 通信作者:蒋鹏(1964-),男,博士,研究员级高级工程师 E-mail:jp1964@163.com
参考文献:

 [1]王庆明, 孙渊.残余应力测试技术的进展与动向[J].机电工程,2011,28(1):11-15,41.


Wang Q M,Sun Y. Research development on the test methods of residual stress [J]. Journal of Mechanical & Electrical Engineering,2011,28(1):11-15,41.

[2]蒋刚, 谭明华,王伟明,等.残余应力测量方法的研究现状[J].机床与液压,2007,(6):213-216,220.

Jiang G,Tan M H,Wang W M,et al.Present research status of measuring residual stress [J]. Machine Tool & Hydraulics,2007,(6):213-216,220.

[3]王亚民, 王彦龙. 残余应力的超声波检测研究[J].仪表技术,2004,(4):33-34.

Wang Y M,Wang Y L. Measuring system for residual stress by ultrasonic[J]. Instrument Technology,2004,(4):33-34.

[4]Withers P J, Turski M, Edwards L,et al.Recent advances in residual stress measurement[J]. International Journal of Pressure Vessels and Piping,2007,85(3):118-127.

[5]宋俊凯, 黄小波,高玉魁.残余应力测试分析技术[J].表面技术,2016,45(4):75-82.

Song J K,Huang X B,Gao Y K. Test and analysis technology of residual stress [J]. Surface Technology,2016,45(4):75-82.

[6]詹春晓, 李昊,刘一华,等.轿车横梁的冲压残余应力分析[J].合肥工业大学学报,2004,(2):183-186. 

Zhan C X,Li H,Liu Y H,et al. Analysis of stamping residual stresses in the cross members of a car[J]. Journal of Hefei University of Technology,2004,(2):183-186.

[7]彭超楠. ZrTiAlV合金锻造过程中变形与组织演化规律[D].秦皇岛:燕山大学,2016.

Peng C N. The Organization and Evolution of Deformation during the Forging Process of ZrTiAlV Alloy [D]. Qinhuangdao: Yanshan University,2016.

[8]Kamalakar K,Prakash T S. Design optimization of oil pan using finite element analysis[J]. International Journal of Engineering Sciences & Research Technology,2014,3(12):335-341.

[9]肖良红, 龙涛,徐俊瑞,等.拉深比对304不锈钢圆筒件残余应力的影响[J].材料科学与工艺,2015,23(3):18-23.

Xiao L H,Long T,Xu J R,et al. Influence of drawing ratio on the residual stress in 304 stainless steel cylindrical drawing parts [J]. Material Science and Technology,2015,23(3):18-23.

[10]程乾坤, 杜春平.残余应力对零件加工精度的影响分析与工艺改进——以钳工加工燕尾槽为例[J].桂林航天工业学院学报,2019,24(4):497-501.

Cheng Q K,Du C P. Analysis of the influence of residual stress on the machining accuracy of parts and process improvement-Taking fitter processing dovetail groove as an example [J]. Journal of Guilin University of Aerospace Technology,2019,24(4):497-501.

[11]张定铨, 何家文.材料中残余应力的X射线衍射分析和应用[M].西安:西安交通大学出版社,1999.

Zhang D Q,He J W. X-ray Diffraction Analysis and Effect of Residual Stress in Materials [M]. Xi′an:Xi′an Jiaotong University Press,1999.

[12]Chen D Y,Xu Y,Zhang S H,et al. Numerical and experimental study on manufacture of a novel high-capacity engine oil pan subjected to hydro-mechanical deep drawing[J]. Journal of Physics: Conference Series,2017,896(1): 012012-012012.

[13]李申昱. 应变诱发马氏体相变对304奥氏体不锈钢非线性超声响应的影响[D].上海: 华东理工大学,2015.

Li S Y. Deformation Induced Martensitic Transformation Effects on Nonlinear Ultrasonic Responses of 304 Austenitic Stainless Steel[D]. Shanghai:East China University Of Science And Technology,2015.

[14]杨钒, 黄建龙. 304奥氏体不锈钢应变诱发马氏体的研究[J]. 材料热处理学报,2012,33(3):104-109.

Yang F,Huang J L. Study on strain induced martensite in 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment,2012,33(3):104-109.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9