网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新能源汽车空心电机轴复合成形工艺数值模拟及优化
英文标题:Numerical simulation and optimization on composite forming process for hollow motor shaft of new energy vehicle
作者:陈建伟1 周志明1 2 3 桑卓越1 方飞松4 罗荣4 王军军1 涂坚1 黄灿1 
单位:1.重庆理工大学 材料科学与工程学院 2. 重庆市明理云轻量化技术研究院有限公司 3. 重庆合创纳米科技有限公司 4. 重庆建设传动科技有限公司 
关键词:空心电机轴 复合成形 热挤压 冷径向锻造 等效塑性应变 
分类号:TG316.2
出版年,卷(期):页码:2023,48(4):8-15
摘要:

 基于SimuFact模拟分析软件,对新能源汽车空心电机轴复合成形工艺的多工序进行数值模拟分析与优化。研究结果表明:在热挤压成形过程中,等效塑性应变主要集中在靠近凸模前端的位置,材料沿轴向两端流动;经过径向锻造后,电机轴空心段的等效塑性应变沿直径方向先减小后增大,台阶段的等效塑性应变沿直径方向逐渐增大。经正交实验优化后的冷径向锻造工艺参数为:锤头相对转角为18°、锤头下压量为1.0 mm、锤头入模角为22°、坯料进给量为1.0 mm。在此基础上,成功地研制出一种通过热挤压结合冷径向锻造复合成形的新能源汽车空心电机轴,并分析了复合成形工艺对空心电机轴的微观组织及晶粒细化的影响。

  Based on the SimuFact simulation and analysis software, the multi-process of composite forming process for hollow motor shaft of new energy vehicles was numerically simulated and optimized. The results show that the equivalent plastic strain is mainly concentrated near the front end of punch, and the material flows along the two axial ends during the hot extrusion forming process. The equivalent plastic strain at the hollow section of motor  shaft firstly decreases and then increases along the diameter direction after radial forging, and the equivalent plastic strain at the step section increases gradually along the diameter direction. The cold radial forging process parameters optimized by orthogonal experiment are the relative rotation angle of hammer head of 18°, the hammer head depression amount of 1.0 mm, the hammer head die entry angle of 22°, and the billet feeding amount of 1.0 mm. On this basis, a kind of hollow motor shaft for new energy vehicles formed by the composite forming of hot extrusion and cold radial forging was successfully developed, and the influences of the composite forming process on the microstructure and grain refinement of hollow motor shaft were analyzed. 

基金项目:
重庆市人才计划项目(2020RC22);重庆市巴南区科技计划项目(2021TJZ013)
作者简介:
作者简介:陈建伟(1999-),男,硕士研究生 E-mail:846298093@qq.com 通信作者:周志明(1976-),男,博士,教授 E-mail:zhouzhiming@cqut.edu.cn
参考文献:

 
[1]马世博, 孙立科,张双杰,等. 多台阶电机轴敦挤复合成形工艺
[J]. 塑性工程学报,2021,28(7):29-35.


Ma S B, Sun L K, Zhang S J, et al. Multi step motor shaft extrusion composite forming process
[J]. Journal of Plastic Engineering, 2021, 28(7): 29-35.


[2]Huang J, Slater C D, Mandral A, et al. A dynamic model for simulation of hot radial forging process
[J]. Procedia Engineering, 2017, 207:478-483.


[3]周志明, 陈波,黄伟九,等. 精密旋锻技术的研究进展
[J]. 热加工工艺,2017,46(19):5-8.

Zhou Z M, Chen B, Huang W J, et al. Research progress of precision rotary forging technology
[J]. Hot Working Technology, 2017, 46(19): 5-8.


[4]杨华, 高俊峰,何琪功,等. 径向锻造机的几种典型主机结构分析
[J]. 锻压技术,2021,46(6):17-32.

Yang H, Gao J F, He Q G, et al. Analysis on several typical main engine structures of radial forging machine
[J]. Forging & Stamping Technology, 2021, 46(6):17-32.


[5]Afrasiab H, Hamzekolaei M G, Hassani A. New insight into the radial forging process by an asymptotic-based axisymmetric analysis
[J]. Applied Mathematical Modelling, 2022, 102: 811-827.


[6]徐宝池, 石必坤,樊黎霞,等. 冷径向锻造身管壁厚方向变形不均匀性研究
[J]. 兵工学报,2020,41(1):14-20.

Xu B C, Shi B K, Fan L X, et al. Study on deformation inhomogeneity of cold radial forging barrel in wall thickness direction
[J]. Journal of Ordnance Industry, 2020, 41(1): 14-20.


[7]Lu X,Zhou Y F,Xing X L,et al. Failure analysis of hot extrusion die based on dimensional metrology, micro-characterization and numerical simulation-A case study of Ti alloy parts
[J]. Engineering Failure Analysis, 2017, 73:113-128.


[8]Zou J, Ma L, Zhu Y, et al. Deformation mechanism of ZK60 magnesium bars during radial forging: Mathematical modeling and experimental investigation
[J]. Materials Characterization, 2021, 179:111321.


[9]王敬丰, 彭星,王奎,等. 超大规格宽幅薄壁中空镁合金型材挤压成形的数值模拟及实验研究
[J]. 中国有色金属学报,2020,30(12):2810-2819.

Wang J F, Peng X, Wang K, et al. Numerical simulation and experimental study on extrusion forming of large size, wide width and thin wall hollow magnesium alloy profiles
[J]. Chinese Journal of Nonferrous Metals, 2020, 30(12): 2810-2819.


[10]王晓溪, 张翔,张磊,等. 工业纯铝等通道球形转角挤压数值模拟与实验研究
[J]. 中国有色金属学报,2019,29(7):1361-1365.

Wang X X, Zhang X, Zhang L, et al. Numerical simulation and experimental study on equal channel spherical angular extrusion of industrial pure aluminum
[J]. Chinese Journal of Nonferrous Metals, 2019, 29(7): 1361-1365.


[11]石磊, 文九巴,姚怀,等. 钛合金弯管动态流量控制法挤压成形的模拟与实验研究
[J]. 中国有色金属学报,2019,29(2):381-385.

Shi L, Wen J B, Yao H, et al. Simulation and experimental study on extrusion forming of titanium alloy elbow by dynamic flow control method
[J]. Chinese Journal of Nonferrous Metals, 2019, 29(2): 381-385.


[12]张雪, 樊黎霞,张鹤词. 身管线膛精密径向锻造的锻透性分析
[J]. 兵工学报,2019,40(3):474-479.

Zhang X, Fan L X, Zhang H C. Analysis of forging penetration of precision radial forging of pipe bore
[J]. Journal of Ordnance Industry, 2019, 40(3): 474-479.


[13]刘金明, 刘兵,杨晨,等. 精锻身管弹膛内壁成形圈纹缺陷机理研究
[J]. 兵工学报,2020,41(3):452-459.

Liu J M, Liu B, Yang C, et al. Study on the forming mechanism of ring defects on the inner wall of precision forged barrel
[J]. Journal of Ordnance Industry, 2020, 41(3): 452-459.


[14]徐笑, 樊黎霞,王亚平,等. 身管精锻过程跨尺度多晶体塑性有限元模拟与织构预测
[J]. 兵工学报,2016,37(7):1181-1186.

Xu X, Fan L X, Wang Y P, et al. Cross scale polycrystalline plastic finite element simulation and texture prediction of barrel precision forging process
[J]. Journal of Ordnance Industry, 2016, 37(7): 1181-1186.


[15]Zou J, Ma L, Jia W, et al. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging
[J]. Journal of Materials Science & Technology, 2021, 83:228-238.


[16]Cao X Q, Wang B Y, Zhou J, et al. Application of unified constitutive model of 34CrNiMo6 alloy steel and microstructure simulation for flexible skew rolling hollow shafts
[J]. Journal of Manufacturing Processes, 2022, 76:598-610.


[17]Yang Y, Fan L, Xu C. The microstructure, texture evolution and plasticity anisotropy of 30SiMn2MoVA high strength alloy steel tube processed by cold radial forging
[J]. Materials Characterization, 2020, 169(235):110641.


[18]曹菡, 鲁仰辉,李高盛. 风电塔筒用纵筋板轧制的有限元模拟与实验
[J]. 锻压技术,2022,47(9): 164-167.

Cao H, Lu Y H, Li G S. Finite element simulation and experiment on rolling of longitudinal rib plate in wind power tower
[J]. Forging & Stamping Technology, 2022, 47(9): 164-167.


[19]Yong L, Huang J, Huang G, et al. Comparison of radial forging between the two- and three-split dies of a thin-walled copper tube during tube sinking
[J]. Materials & Design, 2014, 56:822-832.


[20]Pachla W, Kulczyk M, Przybysz S, et al. Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2
[J]. Journal of Materials Processing Technology, 2015, 221:255-268.


[21]Wu Y J, Dong X H, Yu Q. An upper bound solution of axial metal flow in cold radial forging process of rods
[J]. International Journal of Mechanical Sciences,2014, 85:120-129.


[22]林鹏程, 庞玉华,孙琦,等. 45钢块体超细晶棒材3D-SPD轧制法
[J]. 金属学报,2021,57(5): 606-612.

Lin P C, Pang Y H, Sun Q,et al. 3D-SPD rolling method of 45 steel block ultrafine grained bar
[J]. Acta Metallica Sinica, 2021, 57(5): 606-612.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9