网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC18钛合金热锻成形换热系数实验研究
英文标题:Research on heat transfer coefficient in hot forging of TC18 titanium alloy
作者:张海成1 2 昌春艳3 周杰2 
单位:1. 中国第二重型机械集团德阳万航模锻有限责任公司 2. 重庆大学 3. 四川建筑职业技术学院 
关键词:TC18钛合金 热锻成形 换热系数 接触面 润滑 
分类号:TG146.23
出版年,卷(期):页码:2023,48(4):24-31
摘要:

 在TC18钛合金热锻成形过程中,锻件与空气、锻件与模具之间的换热系数对热锻成形过程具有显著的影响。为了精确地测定不同条件下的锻件与空气、锻件与模具之间的换热系数,基于工艺实验并结合Deform-3D有限元分析方法,通过热传导反问题法,测定了TC18钛合金在不同条件下对应的换热系数。结果表明:在加热过程中,TC18钛合金与空气的换热系数在0.10~0.30 N·(s·mm·℃)-1 的范围内变化;在冷却过程中,试样与空气的换热系数在0.02~0.10 N·(s·mm·℃)-1范围内变化;试样与模具之间的换热系数受接触面的条件影响较大,无介质、玻璃润滑剂的界面的峰值换热系数较大,约为4.5 N·(s·mm·℃)-1,而在保温棉、玻璃纤维布、新型复合布界面接触条件下的换热系数较小,约在0.4~0.5 N·(s·mm·℃)-1附近。 

 In the hot forging process of TC18 titanium alloy, the heat transfer coefficients between forgings and air, forgings and mold have significant impact on the hot forging process. Therefore, in order to accurately measure the heat transfer coefficients between forgings and air, forgings and mold under different process conditions, the corresponding heat transfer coefficients of TC18 titanium alloy under different conditions were studied by the heat conduction inverse problem method based on process experiments combined with Deform-3D finite element analysis. The results show that during the heating process, the heat transfer coefficient between TC18 titanium alloy and air changes in the range of 0.1-0.3 N·(s·mm·℃)-1, and during the cooling process, the heat transfer coefficient between sample and air changes in the range of 0.02-0.10 N·(s·mm·℃)-1. However, the heat transfer coefficient between sample and mold is greatly affected by the conditions of contact surface. The peak heat transfer coefficient of interface without medium and glass lubricant is relatively large, about 4.5 N·(s·mm·℃)-1, while the heat transfer coefficients of interface with insulating cotton, glass fiber cloth and new composite cloth are small, around 0.4-0.5 N·(s·mm·℃)-1.

基金项目:
四川省重点研发计划资助项目(2022YFG0102)
作者简介:
作者简介:张海成(1988-),男,硕士,高级工程师 E-mail:zhanghaicheng@wh.sinomach-ez.cn
参考文献:

 
[1]朱知寿. 我国航空用钛合金技术研究现状及发展
[J].航空材料学报,2014,34(4):44-50.


Zhu Z S. Research status and development of titanium alloy technology for aviation in China
[J]. Journal of Aeronautical Materials, 2014,34(4): 44-50.


[2]宗影影, 王琪伟,袁林,等.航空航天复杂构件的精密塑性体积成形技术
[J].锻压技术,2021,46(9):1-15.

Zong Y Y, Wang Q W, Yuan L, et al. Precision plastic volume forming technology for aerospace complex components
[J]. Forging & Stamping Technology, 2021,46(9): 1-15.


[3]王鹏. TC18钛合金锻件准β锻共性技术研究
[D].重庆:重庆大学,2021.

Wang P. TC18 Titanium Alloy Forging Standard β Research on Forging Commonness Technology
[D]. Chongqing: Chongqing University, 2021.


[4]张爽爽. TC18钛合金高温热变形行为的研究
[D].汉中:陕西理工大学,2022.

Zhang S S. Study on Hot Deformation Behavior of TC18 Titanium Alloy at High Temperature
[D]. Hanzhong: Shaanxi University of Science and Technology, 2022.


[5]Caron E J F R, Daun K J, Wells M A. Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures
[J]. Int. J. Heat Mass. Transf., 2014,71:396-404.


[6]Caron E, Daun K J, Wells M A. Experimental characterization of heat transfer coefficients during hot forming die quenching of boron steel
[J]. Metall Mater Trans B-Process Metall Mater Process Sci., 2013, 44(2):332-343.


[7]Chen S, Chen K, Peng G, et al. Effect of heat treatment on hot deformation behavior and microstructure evolution of 7085 aluminum alloy
[J]. Mater. Des., 2012,25:93-98.


[8]孙静娜, 向文杰,徐森.TC4钛合金板轧制换热系数实验研究
[J].塑性工程学报,2022,29(3):59-65.

Sun J N, Xiang W J, Xu S. Experimental study on rolling heat transfer coefficient of TC4 titanium alloy plate
[J]. Journal of Plastic Engineering, 2022, 29(3): 59-65.


[9]朱智, 张立文,顾森东.TC11钛合金与5CrMnMo模具钢间接触换热实验研究
[J].大连理工大学学报,2012,52(4):509-513.

Zhu Z, Zhang L W, Gu S D. Experimental study on contact heat transfer between TC11 titanium alloy and 5CrMnMo die steel
[J]. Journal of Dalian University of Technology, 2012,52(4):509-513.


[10]赵青卿. 300M钢的热锻成形边界条件及其影响因素研究
[D].长沙:湖南大学,2020.

Zhao Q Q. Study on the Boundary Conditions of Hot Forging of 300M Steel and Its Influencing Factors
[D]. Changsha: Hunan University, 2020.


[11]Burte P R, Im Y T,Altan T. Measurement and analysis of heat transfer and friction during hot forging
[J]. Journal of Engineering for Industry,1990,112(4): 332-339.


[12]李亨, 田开国,李健.9NiCrMoV钢淬火过程换热系数仿真分析与试验
[J].材料热处理学报,2022,43(4):156-161,169.

Li H, Tian K G, Li J. Simulation analysis and test of heat transfer coefficient of 9NiCrMoV steel during quenching process
[J]. Transaction of Materials and Heat Treatment, 2022,43(4): 156-161,169.


[13]Semiatin S L, Collings E W, Wood V E, et al. Determination of the interface heat transfer coefficient for non-isothermal bulk-forming processes
[J]. Journal of Engineering for Industry, 1987, 109(1):49-57.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9