[1]付艳艳,宋月清,惠松骁,等. 航空用钛合金的研究与应用进展 [J]. 稀有金属,2006,30(6):850-856.
Fu Y Y, Song Y Q, Hui S X, et al. Research and application of typical aerospace titanium alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6):850-856.
[2]金和喜,魏克湘,李建明,等. 航空用钛合金研究进展 [J]. 中国有色金属学报,2015,25(2):280-292.
Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2):280-292.
[3]朱知寿. 我国航空用钛合金技术研究现状及发展 [J]. 航空材料学报,2014,34(4):44-50.
Zhu Z S. Recent research and development of titanium alloys for aviation application in China [J]. Journal of Aeronautical Materials, 2014, 34(4):44-50.
[4]赵永庆,葛鹏.我国自主研发钛合金现状与进展 [J].航空材料学报,2014,34(4):51-61.
Zhao Y Q, Ge P. Current situation and development of new titanium alloys invented in China [J]. Journal of Aeronautical Materials, 2014, 34(4):51-61.
[5]宗影影,王琪伟,袁林,等. 航空航天复杂构件的精密塑性体积成形技术 [J]. 锻压技术,2021,46(9):1-15.
Zong Y Y, Wang Q W, Yuan L, et al. Precision plastic volume forming technology for aerospace complex components [J]. Forging & Stamping Technology, 2021, 46(9):1-15.
[6]王新南,朱知寿,童路,等. 锻造工艺对TC4-DT和TC21损伤容限型钛合金疲劳裂纹扩展速率的影响 [J]. 稀有金属快报,2008,319(7):12-16.
Wang X N, Zhu Z S, Tong L, et al. The influence of forging processing on fatigue crack propagation rate of damage-tolerant titanium alloy [J]. Materials China, 2008, 319(7):12-16.
[7]张利军,常辉,薛祥义. 等温锻造技术及其在航空工业中的应用 [J]. 热加工工艺,2010,39(21):21-24.
Zhang L J, Chang H, Xue X Y. Isothermal forging technology and its application in aviation industry [J]. Hot Working Technology, 2010, 39(21):21-24.
[8]张智,巨建辉,戚运莲,等. 钛合金锻造工艺及其锻件的应用 [J]. 热加工工艺,2010,39(23):34-37.
Zhang Z, Ju J H, Qi Y L, et al. Forging technology of titanium alloy and application of forgings [J]. Hot Working Technology, 2010, 39(23):34-37.
[9]Han Y, Liu G W, Zou D N, et al. Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression [J]. Materials Science and Engineering: A, 2013, 565: 342-350.
[10]Xia L L, Xu Y, El-Aty A A, et al. Deformation characteristics in hydro-mechanical forming process of thin-walled hollow component with large deformation: Experimentation and finite element modeling [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 4705-4714.
[11]王忠堂,张士宏,齐广霞,等. AZ31镁合金热变形本构方程 [J]. 中国有色金属学报,2008,18(11):1977-1982.
Wang Z T, Zhang S H, Qi G X, et al. Constitutive equation of thermal deformation for AZ31 magnesium alloy [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(11):1977-1982.
[12]于以标,陈乐平,徐勇,等.2060-T8E30铝锂合金的热变形行为及本构模型 [J].稀有金属材料与工程,2021,50(12):4388-4394.
Yu Y B, Chen L P, Xu Y, et al. Hot deformation behavior and constitutive model of 2060-T8E30 Al-Li alloy [J]. Rare Metal Materials and Engineering, 2021, 50(12):4388-4394.
[13]鲁世强,李鑫,王克鲁,等.基于动态材料模型的材料热加工工艺优化方法 [J]. 中国有色金属学报,2007,99(6):890-896.
Lu S Q, Li X, Wang K L, et al. Optimizing approach of materials hot working processes based on dynamic material model [J]. The Chinese Journal of Nonferrous Metals, 2007, 99(6):890-896.
[14]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Mater. Trans. A, 1984, 15:1883-1892.
[15]曲凤盛,周杰,刘旭光,等. TC18钛合金热压缩本构方程及热加工图 [J]. 稀有金属材料与工程,2014,43(1):120-124.
Qu F S, Zhou J, Liu X G, et al. Constitutive equation and processing map of thermal deformation for TC18 titanium alloy [J]. Rare Metal Materials and Engineering, 2014, 43(1):120-124.
[16]Prasad Y V R K. Recent advances in the science of mechanical processing [J]. Indian J. Technol. , 1990, 28: 435-451.
[17]Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working [J]. Journal of Materials Processing Technology, 2003, 142: 289-294.
[18]谭志龙,尹畅畅,闻明,等. NiPt15合金热变形行为及热加工图研究 [J]. 稀有金属材料与工程,2021,50(11):4149-4156.
Tan Z L, Yin C C, Wen M, et al. Hot deformation behavior and hot processing maps of NiPt15 alloys [J]. Rare Metal Materials and Engineering, 2021, 50(11): 4149-4156.
|