网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于单向拉伸的7A09铝合金本构方程
英文标题:Constitutive equation of 7A09 aluminum alloy based on uniaxial tension
作者:马康1 宋健1 冯瑶2 袁斌先2 
单位:1. 天津航天长征火箭制造有限公司 2. 天津职业技术师范大学 
关键词:7A09铝合金 温成形 单向拉伸 本构模型 应变速率 
分类号:TG146.2+1
出版年,卷(期):页码:2023,48(4):249-255
摘要:

 通过不同温度及应变速率下的单向拉伸试验,获得了7A09铝合金板材关键力学性能参数的变化规律。结果表明:在应变速率一定的条件下,当温度降低时,7A09铝合金的抗拉强度与流动应力随之升高,当温度升高时,断后伸长率有明显提高。基于Fields & Backofen本构方程,建立7A09铝合金温拉伸时的应力-应变本构模型,分析和探讨了在不同温度状态下7A09铝合金的强化规律。结果表明:7A09铝合金的应变强化指数随着温度的升高而减小,而应变速率敏感性指数则显著提高,应变速率的强化作用得到了显著增强。以温成形技术生产的桁条加强件为例,利用本构模型进行有限元模拟,确定成形速度为5000 mm·s-1时,零件减薄率最小;温度为175 ℃时,零件壁厚分布最为均匀,最小减薄率仅为3.8%。

 The variation rules of key mechanical property parameters  of 7A09 aluminum alloy sheet were obtained by uniaxial tensile tests at different temperatures and strain rates. The results show that under the condition of constant strain rate, the tensile strength and flow stress of 7A09 aluminum alloy increase with the decreasing of temperature, and the elongation after fracture increases obviously with the increasing of temperature. Based on the Fields & Backofen constitutive equation, the stress-strain constitutive model of 7A09 aluminum alloy during warm tension was established, and the strengthening rules of 7A09 aluminum alloy under different temperature conditions were analyzed and discussed. The results show that the strain hardening index of 7A09 aluminum alloy decreases with the increasing of temperature, while the strain rate sensitivity coefficient increases significantly, and the hardening effect of strain rate is significantly enhanced. For the stringer reinforcement by warm forming technology, the finite element simulation was carried out by using the constitutive model, and it is determined that the thinning rate of parts is the minimum when the forming speed is 5000 mm·s-1. When the forming temperature is 175 ℃, the wall thickness distribution of parts is the most uniform, and the minimum thinning rate is only 3.8%. 

基金项目:
天津市教委科研计划项目(2020KJ106)
作者简介:
作者简介:马康(1986-),男,硕士,工程师 E-mail:makang1573@163.com
参考文献:

 
[1]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys
[J]. Materials & Design, 2014, 56: 862-871.



[2]王建国, 王祝堂. 航空航天变形铝合金的进展(1)
[J]. 轻合金加工技术, 2013, 41(8): 1-6,32.

Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry
[J]. Light alloy Fabrication Technology, 2013, 41(8): 1-6, 32.


[3]吴栋, 王志祥,刘观日,等. 基于Kriging代理模型的大直径运载火箭蒙皮桁条结构分步优化方法研究
[J]. 载人航天, 2020, 26(2): 166-171.

Wu D, Wang Z X, Liu G R, et al. Substep optimization method of skinned truss structure for large diameter launch vehicle based on Kriging surrogate model
[J]. Manned Spaceflight, 2020, 26(2): 166-171.


[4]Zhou J, Wang B, Lin J, et al. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm
[J]. Archives of Civil and Mechanical Engineering, 2013, 13(3): 401-411.


[5]孙德勤, 陈慧君, 文青草,等. 耐热铝合金的发展与应用
[J]. 有色金属科学与工程, 2018, 9(3): 65-69.

Sun D Q, Chen H J, Wen Q C, et al. Development and application of heat-resistant Al alloy
[J]. Nonferrous Metals Science and Engineering,2018, 9(3): 65-69.


[6]管仁国, 娄花芬, 黄晖,等. 铝合金材料发展现状、趋势及展望
[J]. 中国工程科学, 2020, 22(5): 68-75.

Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects
[J]. Strategic Study of CAE, 2020, 22(5): 68-75.


[7]Toros S, Ozturk F, Kacar I. Review of warm forming of aluminum-magnesium alloys
[J]. Journal of Materials Processing Technology, 2008, 207(1-3): 1-12.


[8]GB/T 16856—2013,变形铝、镁及其合金加工制品拉伸试验用试样及方法
[S]. 

GB/T 16856—2013,Test pieces and method for tensile test for wrought aluminium and magnesium alloys products
[S].


[9]GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法
[S]. 

GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature
[S].


[10]冀亚森, 赵勐舟, 雍艺龙,等. 7A09铝合金半固态材料力学行为研究
[J]. 热加工工艺, 2009,38(10):71-73.

Ji Y S, Zhao M Z, Yong Y L, et al. Study on mechanical behavior of 7A09 alloy on semi-solid state
[J]. Material & Heat Treatment, 2009, 38(10):71-73.


[11]马冬威, 李淼泉, 罗皎,等. 基于应变影响的7A09铝合金等温压缩流动应力模型
[J]. 中国有色金属学报, 2011,21(5):954-960.

Ma D W, Li M Q, Luo J, et al. Flow stress model considering contribution of strain in isothermal compression of 7A09 aluminum alloy
[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5):954-960.


[12]Kim Hyunok, Hahnlen Ryan, Feister Tom, et al. Comparison of drawability between warm forming and cold forming of aluminum 6xxx alloys
[J]. IOP Conference Series: Materials Science and Engineering, 2018, 418(1): 012029.


[13]Laurent H, Simes V M, Oliveira M C, et al. The influence of warm forming conditions on the natural aging and springback of a 6016-T4 aluminum alloy
[J]. IOP Conference Series: Materials Science and Engineering, 2018, 418(1): 012020.


[14]Sheng Z Q, Mallick P K. Predicting sheet forming limit of aluminum alloys for cold and warm forming by developing a ductile failure criterion
[J]. Journal of Manufacturing Science and Engineering, 2017, 139(11):111018.


[15]Sun H T, Wang J, Shen G Z, et al. Application of warm forming aluminum alloy parts for automotive body based on impact
[J]. International Journal of Automotive Technology, 2013, 14(4):605-610.


[16]冯瑶. 7A09铝合金桁条加强件压弯温成形性能及工艺参数研究
[D].天津:天津职业技术师范大学,2021.

Feng Y. Warm Bending Formability and Process Parameters Research of 7A09 Aluminum Alloy Stringer Reinforcement
[D]. Tianjin: Tianjin University of Technology and Education, 2021.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9