[1]Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design, 2014, 56: 862-871.
[2]王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1-6,32.
Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry [J]. Light alloy Fabrication Technology, 2013, 41(8): 1-6, 32.
[3]吴栋, 王志祥,刘观日,等. 基于Kriging代理模型的大直径运载火箭蒙皮桁条结构分步优化方法研究 [J]. 载人航天, 2020, 26(2): 166-171.
Wu D, Wang Z X, Liu G R, et al. Substep optimization method of skinned truss structure for large diameter launch vehicle based on Kriging surrogate model [J]. Manned Spaceflight, 2020, 26(2): 166-171.
[4]Zhou J, Wang B, Lin J, et al. Optimization of an aluminum alloy anti-collision side beam hot stamping process using a multi-objective genetic algorithm [J]. Archives of Civil and Mechanical Engineering, 2013, 13(3): 401-411.
[5]孙德勤, 陈慧君, 文青草,等. 耐热铝合金的发展与应用 [J]. 有色金属科学与工程, 2018, 9(3): 65-69.
Sun D Q, Chen H J, Wen Q C, et al. Development and application of heat-resistant Al alloy [J]. Nonferrous Metals Science and Engineering,2018, 9(3): 65-69.
[6]管仁国, 娄花芬, 黄晖,等. 铝合金材料发展现状、趋势及展望 [J]. 中国工程科学, 2020, 22(5): 68-75.
Guan R G, Lou H F, Huang H, et al. Development of aluminum alloy materials: Current status, trend, and prospects [J]. Strategic Study of CAE, 2020, 22(5): 68-75.
[7]Toros S, Ozturk F, Kacar I. Review of warm forming of aluminum-magnesium alloys [J]. Journal of Materials Processing Technology, 2008, 207(1-3): 1-12.
[8]GB/T 16856—2013,变形铝、镁及其合金加工制品拉伸试验用试样及方法 [S].
GB/T 16856—2013,Test pieces and method for tensile test for wrought aluminium and magnesium alloys products [S].
[9]GB/T 228.2—2015,金属材料拉伸试验第2部分:高温试验方法 [S].
GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2: Method of test at elevated temperature [S].
[10]冀亚森, 赵勐舟, 雍艺龙,等. 7A09铝合金半固态材料力学行为研究 [J]. 热加工工艺, 2009,38(10):71-73.
Ji Y S, Zhao M Z, Yong Y L, et al. Study on mechanical behavior of 7A09 alloy on semi-solid state [J]. Material & Heat Treatment, 2009, 38(10):71-73.
[11]马冬威, 李淼泉, 罗皎,等. 基于应变影响的7A09铝合金等温压缩流动应力模型 [J]. 中国有色金属学报, 2011,21(5):954-960.
Ma D W, Li M Q, Luo J, et al. Flow stress model considering contribution of strain in isothermal compression of 7A09 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5):954-960.
[12]Kim Hyunok, Hahnlen Ryan, Feister Tom, et al. Comparison of drawability between warm forming and cold forming of aluminum 6xxx alloys [J]. IOP Conference Series: Materials Science and Engineering, 2018, 418(1): 012029.
[13]Laurent H, Simes V M, Oliveira M C, et al. The influence of warm forming conditions on the natural aging and springback of a 6016-T4 aluminum alloy [J]. IOP Conference Series: Materials Science and Engineering, 2018, 418(1): 012020.
[14]Sheng Z Q, Mallick P K. Predicting sheet forming limit of aluminum alloys for cold and warm forming by developing a ductile failure criterion [J]. Journal of Manufacturing Science and Engineering, 2017, 139(11):111018.
[15]Sun H T, Wang J, Shen G Z, et al. Application of warm forming aluminum alloy parts for automotive body based on impact [J]. International Journal of Automotive Technology, 2013, 14(4):605-610.
[16]冯瑶. 7A09铝合金桁条加强件压弯温成形性能及工艺参数研究 [D].天津:天津职业技术师范大学,2021.
Feng Y. Warm Bending Formability and Process Parameters Research of 7A09 Aluminum Alloy Stringer Reinforcement [D]. Tianjin: Tianjin University of Technology and Education, 2021.
|